A template attack against Verify PIN algorithms

Hélène Le Bouder, Thierno Barry, Damien Couroussé, Jean-Louis Lanet and **Ronan Lashermes**

A template attack against Verify PIN algorithms

Le Bouder et al.

July 27th 2016

uction

Verify PIN algorithm

Attack 0000 Results 00000000 Conclusion

Personal Identification Number (PIN) codes.

- Used to authenticate the user,
- in payment cards or SIM cards...
- Targets of choice for malicious adversaries.
- A limited number of trials.

A template attack against Verify PIN algorithms Le Bouder *et al.* July 27th 2016

Introduction	

Verify PIN algorithm

Attack

Results 00000000 Conclusion

Personal Identification Number (PIN) codes.

- Used to authenticate the user,
- in payment cards or SIM cards...
- Targets of choice for malicious adversaries.
- A limited number of trials.

Side Channel Analysis (SCA)

- SCA consists in observing some physical characteristics which are modified during the computation performed on the circuit.
- Most classic leakages are: timing, power consumption, electromagnetic emissions (EM) ...
- The main difficulty of the attack is to succeed with very few traces.
- Template attack is a kind of SCA, based on characterization.

Le Bouder et al.

Introduction	Verify PIN algorithm		Conclusion

- 2 Verify PIN algorithm
- 3 Attack
 - Profiling phase
 - Attack phase
- 4 Results
 - Test bench
 - General results
 - Final attack

5 Conclusion

A template attack against Verify PIN algorithms Le Bouder *et al.* July 27th 2016

Verify PIN algorithm		Conclusion

- 2 Verify PIN algorithm
- 3 Attack
 - Profiling phase
 - Attack phase
- 4 Results
 - Test bench
 - General results
 - Final attack

5 Conclusion

A template attack against Verify PIN algorithms Le Bouder et al. Ju

Attack 0000 Results

Conclusion

Verify PIN algorithm

1:	procedure VERIFY PIN(candidate PIN V)
2:	counter = counter - 1
3:	if counter > 0 then
4:	status = $\text{COMPARISON}(U, V)$
5:	$status_2 = COMPARISON(U, V)$
6:	if status \neq status ₂ then
7:	ERROR, device is blocked
8:	else
9:	if status = TRUE then
10:	counter initialized at original value
11:	end if
12:	end if
13:	else
14:	device is blocked
15:	end if
16:	return status
17:	end procedure

- PIN code is an array of m bytes.
- True PIN: U,
- Candidate PIN: V,
- $U \in \llbracket 0,9 \rrbracket^m$.
- 10^m different PIN codes.
- Countermeasure against fault attack: compare *U* and *V* twice.

Results

Conclusion

Comparison of two PIN codes

- 1: **procedure** COMPARISON(candidate PIN V, true PIN U)
- 2: status = FALSE
- 3: diff = FALSE
- 4: fake = FALSE
- 5: **for** b = 0 to *m* **do**
- 6: **if** $U_b \neq V_b$ then
- 7: diff = TRUE
- 8: else
- 9: fake = TRUE
 10: end if
- 11: **if** (b = m) and (diff = FALSE) **then**
 - status = TRUE
- 13: else

12:

- 14: fake = TRUE
- 15: end if
- 16: end for
- 17: return status
- 18: end procedure

Countermeasure against timing attack:

comparison between U and V has to be in a constant time.

Introduction	Landa a		

- 2 Verify PIN algorithm
- 3 Attack
 - Profiling phase
 - Attack phase

4 Results

- Test bench
- General results
- Final attack

5 Conclusion

A template attack against Verify PIN algorithms Le Bouder et al.

Verify PIN algorithm

Attack

Results

Conclusion

8/23

A template attack

2 phases

- profiling phase,
- e attack phase.

The attacker can :

- obtain one trace on the targeted device;
- change the True PIN in her profiling device;
- obtain many traces on her profiling device.

A template attack against Verify PIN algorithms Le Bouder *et al.* July 27th 2016

	Verify PIN algorithm	Attack	Conclusion
		0000	
Profiling phase			

- 2 Verify PIN algorithm
- 3 Attack
 - Profiling phase
 - Attack phase

4 Results

- Test bench
- General results
- Final attack

5 Conclusion

A template attack against Verify PIN algorithms Le Bouder et al. July

	Verify PIN algorithm	Attack	Conclusion
		0000	
Profiling phase			

Step 1: Campaign on the profiling device

On the profiling device

- Campaign is for one given byte b.
- The byte U_b of the True PIN takes all values k in [0, 9] and the other bytes stay to zero.
- Bytes of Candidate PIN V are fixed to a chosen value v.
- For each (k, v) collect many traces: $M_{v,k} = \{xk_{(i,j)}\}$, *i* for trace, *j* for time.

A template attack against Verify PIN algorithms Le Bouder *et al.* July 27th 2016

	Verify PIN algorithm	Attack	Conclusion
		0000	
Profiling phase			

Step 1: Campaign on the profiling device

On the profiling device

- Campaign is for one given byte b.
- The byte U_b of the True PIN takes all values k in [0, 9] and the other bytes stay to zero.
- Bytes of Candidate PIN V are fixed to a chosen value v.

• For each (k, v) collect many traces: $M_{v,k} = \{xk_{(i,j)}\}$, *i* for trace, *j* for time.

Step 2: Detection of points of interest.

Select the moment of computation of Comparison (relevant j).

	Verify PIN algorithm	Attack	Conclusion
		0000	
Profiling phase			

Step 1: Campaign on the profiling device

On the profiling device

- Campaign is for one given byte b.
- The byte U_b of the True PIN takes all values k in [0, 9] and the other bytes stay to zero.
- Bytes of Candidate PIN V are fixed to a chosen value v.

• For each (k, v) collect many traces: $M_{v,k} = \{xk_{(i,j)}\}$, *i* for trace, *j* for time.

Step 2: Detection of points of interest.

Select the moment of computation of Comparison (relevant j).

Step 3: Build of templates.

• Compute the sample covariance matrix $S_{v,k} = \{sk_{(j,j')}\},\$ $sk_{(i,j')} = \frac{1}{n-1} \cdot (xk_j - \overline{xk_j})^t (xk_{i'} - \overline{xk_{i'}})$.

A template attack against Verify PIN algorithms

Le Bouder et al.

July 27th 2016

lnría

	Verify PIN algorithm 00	Attack ○○●○	Results 00000000	Conclusion
Attack phase				

- 2 Verify PIN algorithm
- 3 Attack
 - Profiling phase
 - Attack phase
- 4 Results
 - Test bench
 - General results
 - Final attack

5 Conclusion

A template attack against Verify PIN algorithms Le Bouder et al. July 27th 2016

	Verify PIN algorithm	Attack	Results	Conclusion
		0000		
Attack phase				
On target	ed device			

Step 4: Campaign on the targeted device

- True PIN byte U_b is **unknown**, it is the target;
- Candidate PIN byte V_b is equal to v.
- Trace is a vector $T_v = \{x_j\}$.

	Verify PIN algorithm	Attack	Conclusion
		0000	
Attack phase			
_			

Step 4: Campaign on the targeted device

On targeted device

- True PIN byte U_b is **unknown**, it is the target;
- Candidate PIN byte V_b is equal to v.
- Trace is a vector $T_v = \{x_j\}$.

Step 5: Confrontation between measurements

- Confront the trace T_v to the template matrix $S_{v,k}$.
- General formula in template attack: $F_{\nu}\left(T_{\nu}|S_{\nu,k}, \overline{xk}\right) = \frac{1}{\sqrt{(2\pi)^{p} \cdot |S_{\nu,k}|}} \cdot \exp\left(-\frac{1}{2} \cdot \left(T_{\nu} - \overline{xk}\right) \cdot S_{\nu,k}^{-1} \cdot \left(T_{\nu} - \overline{xk}\right)^{t}\right).$

A template attack against Verify PIN algorithms Le Bouder *et al.* July 27th 2016 *India*

	Verify PIN algorithm	Attack	Conclusion
		0000	
Attack phase			
	and the second		

Step 4: Campaign on the targeted device

On targeted device

- True PIN byte U_b is unknown, it is the target;
- Candidate PIN byte V_b is equal to v.
- Trace is a vector $T_v = \{x_j\}$.

Step 5: Confrontation between measurements

- Confront the trace T_v to the template matrix $S_{v,k}$.
- General formula in template attack: $F_{\nu}\left(T_{\nu}|S_{\nu,k}, \overline{xk}\right) = \frac{1}{\sqrt{(2\pi)^{p} \cdot |S_{\nu,k}|}} \cdot \exp\left(-\frac{1}{2} \cdot \left(T_{\nu} - \overline{xk}\right) \cdot S_{\nu,k}^{-1} \cdot \left(T_{\nu} - \overline{xk}\right)^{t}\right).$

Step 6: Discriminating guesses

- Return the guess k_v for which F_v is maximal for a given T_v .
- Rank the guesses k according to the value of $F_v(T_v, k)$.

A template attack against Verify PIN algorithms

Le Bouder et al.

July 27th 2016

	Verify PIN algorithm	Results	Conclusion
Test bench		• 0 000000	

- 2 Verify PIN algorithm
- 3 Attack
 - Profiling phase
 - Attack phase
- 4 Results

Test bench

- General results
- Final attack

5 Conclusion

A template attack against Verify PIN algorithms Le Bouder et al. July 27th 2016

A template attack against Verify PIN algorithms Le Bouder *et al.* July 27th 2016

	Verify PIN algorithm	Results	Conclusion
		0000000	
General results			

- 2 Verify PIN algorithm
- 3 Attack
 - Profiling phase
 - Attack phase

- Test bench
- General results
- Final attack

5 Conclusion

A template attack against Verify PIN algorithms Le Bouder et al. July 27th 2016

	Verify PIN algorithm	Results	Conclusion
		0000000	
General results			

- The True byte PIN: $U_b = 0$
- The Candidate byte PIN: $V_b = 0$
- The returned guess is clearly: k = 0
- If $U_b = V_b$. The attack always succeeds.

- The Candidate PIN byte: $V_b = 0.$
- The returned guess is k = 3.
- $U_b \neq V_b$: The attack succeeds, not so clearly.

A template attack against Verify PIN algorithms

quesses k

2 4 6 8

auesses k

0.02

0.1118

0.1116

0.1114

0.111 0.1108 0.1106

0 2 4 6 8

Le Bouder et al.

July 27th 2016

	Verify PIN algorithm	Results	Conclusion
		00000000	
Final attack			

- - Profiling phase
 - Attack phase
- Results 4

- Test bench
- General results
- Final attack

Ínría_ A template attack against Verify PIN algorithms Le Bouder et al. July 27th 2016

	Verify PIN algorithm	Results	Conclusion
		00000000	
Final attack			

- 1: **procedure** ATTACK(*C* the number of trials in the VERFY PIN)
- 2: N = C - 1 // limitation of number trials. 3. v = 0 $\mathbb{K} = [[0, 9]]$ 4: $\hat{k} = \max_{k \in \mathbb{K}}^{-1} (F_v(T_v, k)) //\hat{k}$ best guess with v. 5: while $\hat{k} \neq v$ and N > 0 do 6. N = N - 17: $\mathbb{K} = \mathbb{K} \setminus \{v\} // \text{ guess } v \text{ is eliminated.}$ 8: $v = \hat{k}$ <u>0</u>. $\hat{k} = \max_{k \in \mathbb{K}}^{-1} \left(F_{\nu}(T_{\nu}, k) \right).$ $10 \cdot$ end while 11: return \hat{k} 12: 13: end procedure

- v is the value tested on the Candidate PIN: V_b = v.
- $F_v(T_v, k)$ function template of the attack.

- Send candidate PIN with all bytes to 0.
- ② Then test the PIN code returned by the first attack.
 - Worst case: in 8 trials, the PIN code is retrieved.

	Verify PIN algorithm	Results	Conclusion
Final attack		0000000	
Success rate			

numb	er of traces:	1	2	3	4	5	6	7	8
n = 100000	1 COMPARAISON	27.70	41.47	53.84	63.99	73.07	81.33	88.51	100
	2 COMPARAISON	31.71	46.56	57.82	67.76	76.63	84.36	90.68	100
n = 200000	1 COMPARAISON	29.28	44.27	56.79	67.41	76.66	83.91	90.68	100
n = 200000	2 COMPARAISON	32.72	49.52	61.96	72.05	80.49	87.53	93.23	100
n = 400000	1 COMPARAISON	29.56	44.11	56.0	66.88	75.96	84.04	90.58	100
n = 400000	2 COMPARAISON	32.91	48.38	60.88	71.68	80.07	86.91	92.94	100

Success rate to retrieve a byte of a True PIN U_b according to the size n of the templates and the number and the choice of traces.

Verify PIN algorithm		Conclusion

- 2 Verify PIN algorithm
- 3 Attack
 - Profiling phase
 - Attack phase
- 4 Results
 - Test bench
 - General results
 - Final attack

5 Conclusion

A template attack against Verify PIN algorithms Le Bouder et al. July 27th 2016

Verify PIN algorithm		Conclusion

- The first SCA attack with EM traces on Verify PIN algorithms.
- To enter a PIN code, a user has a limited number of trials.
- Therefore the main difficulty of the attack is to succeed with very few traces.
- The PIN is retrieved in 8 trials at most!

A template attack against Verify PIN algorithms Le Bouder et al. July 27th 2016

Verify PIN algorithm		Conclusion

- The first SCA attack with EM traces on Verify PIN algorithms.
- To enter a PIN code, a user has a limited number of trials.
- Therefore the main difficulty of the attack is to succeed with very few traces.
- The PIN is retrieved in 8 trials at most!
- It becomes a new real threat, and it is feasible on a low cost and portable platform.
- Some protections against fault attacks introduce new vulnerabilities.

Verify PIN algorithm		Conclusion

- The first SCA attack with EM traces on Verify PIN algorithms.
- To enter a PIN code, a user has a limited number of trials.
- Therefore the main difficulty of the attack is to succeed with very few traces.
- The PIN is retrieved in 8 trials at most!
- It becomes a new real threat, and it is feasible on a low cost and portable platform.
- Some protections against fault attacks introduce new vulnerabilities.
- Future works:
 - Find new contermeasures.
 - Test the attack on a real device (mobile phone or smart card).

/erify PIN algorithm

Attack

Results

Conclusion

Thank you for your attention !

Any questions?

A template attack against Verify PIN algorithms Le Bouder et al. July 27th 2016

