
Hardware-Assisted Program Execution Integrity: HAPEI

Ronan Lashermes, Hélène Le Bouder and Gaël Thomas

INRIA, IMT-Atlantique, DGA

November 29th, 2018

NordSec 2018, Oslo

R. Lashermes HAPEI November 29th, 2018 1 / 29

Content

1 Introduction

2 Abusing Hardware

3 Ensuring program execution integrity

4 Conclusion

R. Lashermes HAPEI November 29th, 2018 2 / 29

Introduction

Section 1

Introduction

R. Lashermes HAPEI November 29th, 2018 3 / 29

Introduction

Instructions

R. Lashermes HAPEI November 29th, 2018 4 / 29

Introduction

The software abstraction is a lie
Ok, it works for simple architectures

R. Lashermes HAPEI November 29th, 2018 5 / 29

Introduction

What is hardware ?

Rocket core (RISC-V)

R. Lashermes HAPEI November 29th, 2018 6 / 29

Introduction

Fallacies about hardware

1 Memory access is O(1) in time ⇒ Cache timing attacks.
2 Instructions are executed in order ⇒ Spectre/Meltdown/...
3 Program integrity is guaranteed

R. Lashermes HAPEI November 29th, 2018 7 / 29

Introduction

Hardware fault attacks

©Inria / Photo C. Morel

R. Lashermes HAPEI November 29th, 2018 8 / 29

Introduction

©Inria / Photo C. Morel

R. Lashermes HAPEI November 29th, 2018 8 / 29

Introduction

Fault activated backdoor

Source code

v o i d b l i n k_wa i t ()
{

un s i g n ed i n t wa i t_fo r = 3758874636;
un s i g n ed i n t coun t e r ;
f o r (coun t e r = 0 ; coun t e r < wa i t_fo r ; c oun t e r += 8000000) ;

}

Assembly

08000598 <b l ink_wa i t >:
push { r7 , l r }
sub sp , #8
add r7 , sp , #0
l d r r3 , [pc , #44] ; (80005 cc <b l i nk_wa i t+0x34>)
. . .
adds r7 , #8
mov sp , r7
pop { r7 , pc}
. word 0 xe00be00c ; @80005cc , 0 xe00be00c = 3758874636

R. Lashermes HAPEI November 29th, 2018 9 / 29

Introduction

Fault activated backdoor

Source code

v o i d b l i n k_wa i t ()
{

un s i g n ed i n t wa i t_fo r = 3758874636;
un s i g n ed i n t coun t e r ;
f o r (coun t e r = 0 ; coun t e r < wa i t_fo r ; c oun t e r += 8000000) ;

}

Assembly

08000598 <b l ink_wa i t >:
push { r7 , l r }
sub sp , #8
add r7 , sp , #0
l d r r3 , [pc , #44] ; (80005 cc <b l i nk_wa i t+0x34>)
. . .
adds r7 , #8
mov sp , r7
nop
b backdoor

R. Lashermes HAPEI November 29th, 2018 10 / 29

Introduction

The previous application could have been proven correct.

R. Lashermes HAPEI November 29th, 2018 11 / 29

Ensuring program execution integrity

Section 2

Ensuring program execution integrity

R. Lashermes HAPEI November 29th, 2018 12 / 29

Ensuring program execution integrity

Several integrities

Instructions Integrity (II): executed instructions belong to the
program.
Control Flow Integrity (CFI): only authorized control flow (jumps,
branches, ...).
Data Integrity (DI): program data cannot be tampered with.
Program Integrity = II + CFI

Several attack models
Code Injection Attacks (CIA): an attacker tries to divert the
control flow to execute its own malicious payload.
Code-Reuse Attacks (CRA): an attacker tries to execute a
malicious payload composed by a sequence of legitimate pieces of
programs (often called widgets).
Hardware Fault Injection (HFI): the attacker can edit the program,
at runtime, by modifiyng data or instruction values.

R. Lashermes HAPEI November 29th, 2018 13 / 29

Ensuring program execution integrity

SOFIA: Instruction Set Randomization1

Control Flow Integrity
Encrypt instructions, with program state encoding:

i ′ = Ek(PCprev ||PC)⊕ i

Example

1 : i1 ’
2 : i2 ’
3 : i3 ’

To decrypt i3: i3 = Ek(2||3)⊕ i ′3

Nice if all instructions have only 1 predecessor... If not we have a special
case to deal with.

1"SOFIA: Software and control flow integrity architecture", de Clercq et al., 2016
R. Lashermes HAPEI November 29th, 2018 14 / 29

Ensuring program execution integrity

SOFIA: Instruction Set Randomization2

System Integrity
Compute a MAC for all 6-instructions blocks, placed at the beginning of
the block.

2-predecessors
Compute the two corresponding MACs and
adapt the control flow to the entry point.

2"SOFIA: Software and control flow integrity architecture", de Clercq et al., 2016
R. Lashermes HAPEI November 29th, 2018 15 / 29

Ensuring program execution integrity

HAPEI: Hardware-Assisted Program Execution Integrity

Goal
Another solution to the CFI&II problem, yet inefficient (for now).
Instruction Set Randomization technique.

1) PC is not the program state

accn = HMACk(accn−1||in−1).

Initial state can be acc0 = HMACk(IV). k device specific secret key.

2) Encrypt with program state (as in SOFIA)

Encrypt:
i ′n = C (accn)⊕ in.

C is a compression fonction: the size of accn must be decided according to
security requirements.

R. Lashermes HAPEI November 29th, 2018 16 / 29

Ensuring program execution integrity

HAPEI

3) 2-predecessors

The state of the program before a 2-predecessors instruction must be an
invariant depending on the 2 possible states. Program state values ∈ F2b .
Encrypt:

{Σ = a1 ⊕ a2, i
′
n = C (a1 · a2)⊕ in}.

Decrypt:
in = C (accn · (accn ⊕ Σ))⊕ i ′n.

Σ gives no information away on a1 or a2 if both stay secret.

R. Lashermes HAPEI November 29th, 2018 17 / 29

Ensuring program execution integrity

HAPEI

3) 2-predecessors

The state of the program before a 2-predecessors instruction must be an
invariant depending on the 2 possible states. Program state values ∈ F2b .
Encrypt:

{Σ = a1 ⊕ a2, i
′
n = C (a1 · a2)⊕ in}.

Decrypt:
in = C (accn · (accn ⊕ Σ))⊕ i ′n.

Σ gives no information away on a1 or a2 if both stay secret.

R. Lashermes HAPEI November 29th, 2018 17 / 29

Ensuring program execution integrity

HAPEI
4) n-predecessors (cycles allowed in CFG)

The state of the program before a n-predecessors instruction must be a
random invariant (rebase). We must be able to project all legitimate
program states to this rebased value, and reject illegitimate values.

Solution: use projection into subgroups of F2b . Subgroup of size r exists
∀r |2b − 1.
Example: 5|216− 1, so there is a cyclic subgroup {µ, µ2, µ3, µ4, µ5 = 1} for
some µ ∈ F2b with µr = 1.

Encrypt (5-predecessors): a1, a2, . . . , a5. Choose random c ∈ F2b .
Compute polynomial P of degree 4 such that:

P(ai) = c · µi .

Store {P, i ′n = C (c r)⊕ in}.

R. Lashermes HAPEI November 29th, 2018 18 / 29

Ensuring program execution integrity

HAPEI
4) n-predecessors (cycles allowed in CFG)

The state of the program before a n-predecessors instruction must be a
random invariant (rebase). We must be able to project all legitimate
program states to this rebased value, and reject illegitimate values.

Solution: use projection into subgroups of F2b . Subgroup of size r exists
∀r |2b − 1.
Example: 5|216− 1, so there is a cyclic subgroup {µ, µ2, µ3, µ4, µ5 = 1} for
some µ ∈ F2b with µr = 1.

Encrypt (5-predecessors): a1, a2, . . . , a5. Choose random c ∈ F2b .
Compute polynomial P of degree 4 such that:

P(ai) = c · µi .

Store {P, i ′n = C (c r)⊕ in}.

R. Lashermes HAPEI November 29th, 2018 18 / 29

Ensuring program execution integrity

HAPEI
4) n-predecessors (cycles allowed in CFG)

The state of the program before a n-predecessors instruction must be a
random invariant (rebase). We must be able to project all legitimate
program states to this rebased value, and reject illegitimate values.

Solution: use projection into subgroups of F2b . Subgroup of size r exists
∀r |2b − 1.
Example: 5|216− 1, so there is a cyclic subgroup {µ, µ2, µ3, µ4, µ5 = 1} for
some µ ∈ F2b with µr = 1.

Encrypt (5-predecessors): a1, a2, . . . , a5. Choose random c ∈ F2b .
Compute polynomial P of degree 4 such that:

P(ai) = c · µi .

Store {P, i ′n = C (c r)⊕ in}.
R. Lashermes HAPEI November 29th, 2018 18 / 29

Ensuring program execution integrity

HAPEI

Decrypt

in = C (P(accn)r)⊕ i ′n.

Works because ∀i ,

P(ai)
r =

(
c · µi

)r
= c r · (µr)i = c r .

Exponentiation by r required to keep degree of P minimal (but not equal
to constant).

R. Lashermes HAPEI November 29th, 2018 19 / 29

Ensuring program execution integrity

HAPEI

Why the exponentiation? Memory efficiency and security

It is possible to devise a polynomial to map directly from all ai to c (and 1
to 1). But then, the polynomial gives information on its roots.
∀a, deg(gcd(P[x]− a, x2b − x)) ≤ 5, but deg(gcd(P[x]− c , x2b − x)) = 5
for the correct roots.

Polynomial Exponentiation Trick

deg(gcd(P[x]− c · µi , x2b − x)) ≤ 4 but no information leaks as easily.
But it means that illegitimate program states can be accepted ! It
supposes that the attacker cannot control the program state value.

R. Lashermes HAPEI November 29th, 2018 20 / 29

Ensuring program execution integrity

HAPEI

Why the exponentiation? Memory efficiency and security

It is possible to devise a polynomial to map directly from all ai to c (and 1
to 1). But then, the polynomial gives information on its roots.
∀a, deg(gcd(P[x]− a, x2b − x)) ≤ 5, but deg(gcd(P[x]− c , x2b − x)) = 5
for the correct roots.

Polynomial Exponentiation Trick

deg(gcd(P[x]− c · µi , x2b − x)) ≤ 4 but no information leaks as easily.
But it means that illegitimate program states can be accepted ! It
supposes that the attacker cannot control the program state value.

R. Lashermes HAPEI November 29th, 2018 20 / 29

Ensuring program execution integrity

CHIP-8 implementation

CHIP-8
It is an Instruction Set Architecture (ISA) for a video games 8-bit virtual
machine (from the 1970s). Extremely simple ISA (≈ 30 instructions).
ROMs (video games binaries) are freely available on internet.

Our implementation
Two implementations: the reference and the hardened one. A special key
press modifies the next opcode with a random valid one.

R. Lashermes HAPEI November 29th, 2018 21 / 29

Ensuring program execution integrity

Demo time !

R. Lashermes HAPEI November 29th, 2018 22 / 29

Ensuring program execution integrity

Hardening memory usage for a set of CHIP-8 roms.

ROM name ROM byte
size

Instructions
count

Polynomials
count

Field
elements

Polynomials
byte size

INVADERS 1283 202 28 99 1584
GUESS 148 49 8 25 400
KALEID 120 59 10 32 512

CONNECT4 194 67 5 19 304
WIPEOFF 206 101 15 47 752
PONG2 264 126 19 60 960

15PUZZLE 384 116 17 54 864
TETRIS 494 189 32 106 1696
BLINKY 2356 856 84 310 4960
VBRIX 507 218 27 93 1488

SYZYGY 946 414 44 149 2384
BRIX 280 134 17 57 912

TICTAC 486 194 23 89 1424
MAZE 34 13 3 10 160

PUZZLE 184 87 10 34 544
BLITZ 391 121 15 47 752
VERS 230 103 24 73 1168
PONG 246 117 18 57 912
UFO 224 106 15 48 768

TANK 560 236 42 139 2224

R. Lashermes HAPEI November 29th, 2018 23 / 29

Ensuring program execution integrity

HAPEI

Limitations
Indirect branches: ‘ADD PC, PC, R1’,
dynamic libraries,
system calls,
load time/run time relocation. . .

The whole architecture (hardware, software, . . .) has to be designed with
security in mind.

R. Lashermes HAPEI November 29th, 2018 24 / 29

Conclusion

Section 3

Conclusion

R. Lashermes HAPEI November 29th, 2018 25 / 29

Conclusion

Where the difficulty lies

To prove a solution secure in an abstract model is not enough.

It must be implemented without flaws at all abstractions levels.

R. Lashermes HAPEI November 29th, 2018 26 / 29

Conclusion

This is not a hardware problem...

... it is a cross abstraction problem.

Information leaks over networks: you can perform cache timing
attacks on a distant server.
RowHammer faults on a co-hosted virtual machine.
Protocol prover : “cryptographic primitives are supposed unbreakable”.

Technologies like Trustzone or SGX do not help in that regard.

R. Lashermes HAPEI November 29th, 2018 27 / 29

Conclusion

Conclusion

Cross abstraction vulnerabilities reflect our human inability to grasp
complexity.
This abstraction layers representation is an illustration of the sociological
dimension of systems design.
We need new tools to ensure security across layers.

R. Lashermes HAPEI November 29th, 2018 28 / 29

Conclusion

Thank you!

Any questions?

© Inria / Photo C. Morel

R. Lashermes HAPEI November 29th, 2018 29 / 29

	Introduction
	Abusing Hardware
	Ensuring program execution integrity
	Conclusion

