
Do Not Trust Modern System-on-Chips
Electromagnetic fault injection against a System-on-Chip

Thomas Trouchkine 3 Sébanjila Kevin Bukasa 1 Mathieu
Escouteloup 1 Ronan Lashermes 2 Guillaume Bouffard 3

1INRIA/CIDRE 2INRIA/SED&LHS 3ANSSI

May 10th, 2019

INRIA, Rennes

Do Not Trust Modern System-on-Chips May 10th, 2019 1 / 50

In the previous episodes

Section 1

In the previous episodes

Do Not Trust Modern System-on-Chips May 10th, 2019 2 / 50

In the previous episodes

The SoC is king

Image from t3.com
Do Not Trust Modern System-on-Chips May 10th, 2019 3 / 50

In the previous episodes

The SoC is king

Image from http://www.netmarine.net

Do Not Trust Modern System-on-Chips May 10th, 2019 3 / 50

In the previous episodes

Micro-architectural attacks

Do Not Trust Modern System-on-Chips May 10th, 2019 4 / 50

In the previous episodes

The Instruction Set Architecture (ISA) abstraction

The ISA abstraction leaks.

Do Not Trust Modern System-on-Chips May 10th, 2019 5 / 50

In the previous episodes

The Instruction Set Architecture (ISA) abstraction

The ISA abstraction leaks.

You can prove your software correct,
the attacker doesn’t care...

Do Not Trust Modern System-on-Chips May 10th, 2019 5 / 50

In the previous episodes

Physical attacks

Scenario: the attacker can grab the targeted device and bring it in her
supervillain’s lab.
She can measure the environment of the target and interact with it.

Figure: Faustine in the LHS.

Do Not Trust Modern System-on-Chips May 10th, 2019 6 / 50

In the previous episodes

Fault attacks

Modify the chip environment to induce failure. We use electromagnetic
fault injection.

Signal: Sinus 275MHz, 1 period, -14dBm (before ≈50dB
amplification)
XYZ stage, 1µm resolution.
Langer RF U 5-2 magnetic probe.

Figure: Still Faustine in the LHS.

Do Not Trust Modern System-on-Chips May 10th, 2019 7 / 50

In the previous episodes

Fault models on microcontrollers

Fault models
A formal description of the achievable faults is called a fault model. E.g.
bit flip, instruction skip, . . .
It is always the interpretation of a physical behavior at a specific
abstraction level.

On microcontrollers
Data faults: random, bit flip, stuck at.
Control flow faults: (virtual) instruction skip.
Microarchitectural faults: preventing instruction fetch, bus
disturbance.

Do Not Trust Modern System-on-Chips May 10th, 2019 8 / 50

In the previous episodes

ISA fault models

Definition
A fault model that can be described by instruction modifications.
E.g.: b pin_verif_failed → nop

Why ?
The hardware can be modeled with software: allows software
countermeasures to hardware attacks. E.g. duplicate instructions to
counter single-faults in the ISA model.

Do Not Trust Modern System-on-Chips May 10th, 2019 9 / 50

In the previous episodes

Microcontrollers vs SoCs

Before
Slow: < 50 MHz.
Simple: in-order, single-issue, single core.
No MMU.
Limited cache hierarchy (L1 if any).

Do Not Trust Modern System-on-Chips May 10th, 2019 10 / 50

In the previous episodes

Microcontrollers vs SoCs

Now: Cortex-A53
Fast: 1.2 GHz (x24).
Complex: in-order, dual-issue, multiple cores.
MMU present.
Cache hierarchy: L1I, L1D, L2 (unified).

Do Not Trust Modern System-on-Chips May 10th, 2019 10 / 50

In the previous episodes

Microcontrollers vs SoCs

Now: Cortex-A53
Fast: 1.2 GHz (x24).
Complex: in-order, dual-issue, multiple cores.
MMU present.
Cache hierarchy: L1I, L1D, L2 (unified).

What faults can be experimentally achieved ?

Do Not Trust Modern System-on-Chips May 10th, 2019 10 / 50

In the previous episodes

Our target

Raspberry Pi 3 B
BCM2837: 4 × Cortex-A53

Do Not Trust Modern System-on-Chips May 10th, 2019 11 / 50

In the previous episodes

Content

The impact of the operating system.
Fault on L1I.
Fault on MMU.
Fault on L2 (unified).

Do Not Trust Modern System-on-Chips May 10th, 2019 12 / 50

Related works

Section 2

Related works

Do Not Trust Modern System-on-Chips May 10th, 2019 13 / 50

Related works

Teams working on fault models on SoC

ANSSI (& co), EMFI: Thomas Throuchkine, Guillaume Bouffard,
Jessy Cleydière.
eshard, laser FI: ???
INRIA, EMFI: Sébanjila Bukasa, Ronan Lashermes, Jean-Louis Lanet.
INVIA/Thales (& co), EMFI: Julien Proy, Alexandre Berzati, Karine
Heydemann, Albert Cohen.

All teams will publish in 2019 (expectedly).

Do Not Trust Modern System-on-Chips May 10th, 2019 14 / 50

The impact of the operating system

Section 3

The impact of the operating system

Do Not Trust Modern System-on-Chips May 10th, 2019 15 / 50

The impact of the operating system

Targeted software (single-core)

Listing 1: Loop target application
trigger_up();
//wait to compensate bench latency
wait_us(2);
for(i = 0;i<50; i++) {
for(j = 0;j<50;j++) {
cnt++;

}
}
trigger_down();

Do Not Trust Modern System-on-Chips May 10th, 2019 16 / 50

The impact of the operating system

Crashes cartography

0 5 10 15 20 25 30 35

X position

0

5

10

15

20

25

30

35

Y
po

sit
io

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure: Bare-metal

0 5 10 15 20 25 30 35

X position

0

5

10

15

20

25

30

35

Y
po

sit
io

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Figure: Linux (Raspbian)

Cartography valid with a different board and a different experimental setup.

Do Not Trust Modern System-on-Chips May 10th, 2019 17 / 50

The impact of the operating system

Fault models

Linux: faults on registers (ISA model valid).
Bare-metal: no faults (we tried hard).

Do Not Trust Modern System-on-Chips May 10th, 2019 18 / 50

The impact of the operating system

Fault models

Linux: faults on registers (ISA model valid).
Bare-metal: no faults (we tried hard).

Until...

Do Not Trust Modern System-on-Chips May 10th, 2019 18 / 50

Fault on L1I

Section 4

Fault on L1I

Do Not Trust Modern System-on-Chips May 10th, 2019 19 / 50

Fault on L1I

Reminder on memory hierarchy

Do Not Trust Modern System-on-Chips May 10th, 2019 20 / 50

Fault on L1I

First fault observed

On the first execution of a campaign, the expected result (2500) is not
the one received.

Hypotheses
ISA model: instruction skip.
Micro-architectural model: L1I modification.

We use JTAG to read the internal state (with L1D viewpoint).

Do Not Trust Modern System-on-Chips May 10th, 2019 21 / 50

Fault on L1I

First fault observed

Do Not Trust Modern System-on-Chips May 10th, 2019 21 / 50

Fault on L1I

Forensic

Just after a fault, we set the Program Counter to the start of the loop.
Then we execute step-by-step and check the side effects.

Listing 2: Loop target assembly
...
48a04: b94017a0 ldr w0, [x29,#20]
48a08: 11000400 add w0, w0, #0x1
48a0c: b90017a0 str w0, [x29,#20]
48a10: b9401ba0 ldr w0, [x29,#24]
48a14: 11000400 add w0, w0, #0x1
48a18: b9001ba0 str w0, [x29,#24]
48a1c: b9401ba0 ldr w0, [x29,#24]
48a20: 7100c41f cmp w0, #0x31
48a24: 54 ffff0d b. le 48a04
...

pc: 0x48a04
> reg x0
x0 (/64): 0x1
> step
pc: 0x48a08
> reg x0
x0 (/64): 0x2
> step
pc: 0x48a0c
> reg x0
x0 (/64): 0x2
> mdw 0x48a08 1
0x00048a08: 11000400

Figure: JTAG session

Do Not Trust Modern System-on-Chips May 10th, 2019 22 / 50

Fault on L1I

Confirming micro-architectural model

Do Not Trust Modern System-on-Chips May 10th, 2019 23 / 50

Fault on L1I

Confirming micro-architectural model

How to confirm ?
Invalidate L1I cache by executing corresponding instruction.

> reg pc 0x6a784
pc (/64): 0x000000000006A784
> step => IC IALLU
pc: 0x6a788
> step => ISB
pc: 0x6a78c
> reg pc 0x48a08
pc (/64): 0x0000000000048A08
> reg x0
x0 (/64): 0x0000000000000002
> step
pc: 0x48a0c
> reg x0
x0 (/64): 0x0000000000000003

Figure: JTAG session
Do Not Trust Modern System-on-Chips May 10th, 2019 23 / 50

Fault on L1I

Failure cause

Hypothesis
Fault present only on first execution,
and fault has an impact on L1I.

The fault occurs on a memory transfer when writing instructions to L1I.

Do Not Trust Modern System-on-Chips May 10th, 2019 24 / 50

Fault on L1I

Failure cause

Hypothesis
Fault present only on first execution,
and fault has an impact on L1I.

The fault occurs on a memory transfer when writing instructions to L1I.

Listing 3: Loop target assembly
trigger_up() ;
wait_us(2);
/∗ + ∗/invalidate_icache() ;
for (i = 0;i<50; i++) {
for (j = 0;j<50;j++) {
cnt++;

}
}
trigger_down();

Observations
Now, we can reproduce the previous
fault, if we inject during the cache
reload (lasts 2µs).

Do Not Trust Modern System-on-Chips May 10th, 2019 24 / 50

Fault on the MMU

Section 5

Fault on the MMU

Do Not Trust Modern System-on-Chips May 10th, 2019 25 / 50

Fault on the MMU

Reminder on the MMU

Principle

Do Not Trust Modern System-on-Chips May 10th, 2019 26 / 50

Fault on the MMU

Reminder on the MMU

Principle

Do Not Trust Modern System-on-Chips May 10th, 2019 26 / 50

Fault on the MMU

ARMv8 implementation

Translation information

Do Not Trust Modern System-on-Chips May 10th, 2019 27 / 50

Fault on the MMU

Correct memory mapping

Identity Mapping
VA -> PA
0x0 -> 0x0 0x80000 -> 0x80000
0x10000 -> 0x10000 0x90000 -> 0x90000
0x20000 -> 0x20000 0xa0000 -> 0xa0000
0x30000 -> 0x30000 0xb0000 -> 0xb0000
0x40000 -> 0x40000 0xc0000 -> 0xc0000
0x50000 -> 0x50000 0xd0000 -> 0xd0000
0x60000 -> 0x60000 0xe0000 -> 0xe0000
0x70000 -> 0x70000 0xf0000 -> 0xf0000

Do Not Trust Modern System-on-Chips May 10th, 2019 28 / 50

Fault on the MMU

A sneak peek at page tables

Level2
0x00380000: 00390003 00000000 003a0003 00000000 003b0003 00000000

Level3
0x00390000: 00000703 00000000 00010703 00000000 00020703 00000000 00030703 00000000
0x00390020: 00040703 00000000 00050703 00000000 00060703 00000000 00070703 00000000
0x00390040: 00080703 00000000 00090703 00000000 000a0703 00000000 000b0703 00000000
0x00390060: 000c0703 00000000 000d0703 00000000 000e0703 00000000 000f0703 00000000
0x00390080: 00100703 00000000 00110703 00000000 00120703 00000000 00130703 00000000
0x003900a0: 00140703 00000000 00150703 00000000 00160703 00000000 00170703 00000000
0x003900c0: 00180703 00000000 00190703 00000000 001a0703 00000000 001b0703 00000000
0x003900e0: 001c0703 00000000 001d0703 00000000 001e0703 00000000 001f0703 00000000

8192 blocks of size 64KiB ×3 ≈ 1.5GB .

Do Not Trust Modern System-on-Chips May 10th, 2019 29 / 50

Fault on the MMU

Faulting the MMU

Setup

Same code target (loop).
Change injection timing (target the end of L1I loading).
In this case, we investigate a crash (the application did not provide a
result).

Voilà !

Do Not Trust Modern System-on-Chips May 10th, 2019 30 / 50

Fault on the MMU

Faulty mapping

VA -> PA
0x0 -> 0x0 0x100000 -> 0x0
0x10000 -> 0x10000 0x110000 -> 0x0
0x20000 -> 0x20000 0x120000 -> 0x0
0x30000 -> 0x30000 0x130000 -> 0x0
0x40000 -> 0x40000 0x140000 -> 0x100000
0x50000 -> 0x50000 0x150000 -> 0x110000
0x60000 -> 0x60000 0x160000 -> 0x120000
0x70000 -> 0x70000 0x170000 -> 0x130000
0x80000 -> 0x0 0x180000 -> 0x0
0x90000 -> 0x0 0x190000 -> 0x0
0xa0000 -> 0x0 0x1a0000 -> 0x0
0xb0000 -> 0x0 0x1b0000 -> 0x0
0xc0000 -> 0x80000 0x1c0000 -> 0x180000
0xd0000 -> 0x90000 0x1d0000 -> 0x190000
0xe0000 -> 0xa0000 0x1e0000 -> 0x1a0000
0xf0000 -> 0xb0000 0x1f0000 -> 0x1b0000

This is a working mapping !
Do Not Trust Modern System-on-Chips May 10th, 2019 31 / 50

Fault on the MMU

How to recover this mapping ?

Translation instructions
at s1e3r, x0
mrs x0, PAR_EL1

Put virtual address in x0, get physical address and flags in x0.

Do Not Trust Modern System-on-Chips May 10th, 2019 32 / 50

Fault on the MMU

How to recover this mapping ?

Translation instructions
at s1e3r, x0
mrs x0, PAR_EL1

Put virtual address in x0, get physical address and flags in x0.

How to execute them ?
1 We do not know if they are present in the code and where.
2 We do not want to dump the whole memory → cache interaction.

Solution: we write the instructions in memory with the JTAG.

Do Not Trust Modern System-on-Chips May 10th, 2019 32 / 50

Fault on the MMU

Page tables, after a fault

Level2
0x00380000: 20020703 00000000 20030703 00000000 20040703 00000000

Level3
0x00390000: 40020607 00000000 40030607 00000000 40040607 00000000 40050607 00000000
0x00390020: 40060607 00000000 40070607 00000000 40000000 8a210002 40000000 8a210002
0x00390040: 400a0607 00000000 400b0607 00000000 400c0607 00000000 400d0607 00000000
0x00390060: 400e0607 00000000 400f0607 00000000 40000000 8a210002 40000000 8a210002
0x00390080: 40120607 00000000 40130607 00000000 40140607 00000000 40150607 00000000
0x003900a0: 40160607 00000000 40170607 00000000 d2b82001 8a210000 40000000 8a210006
0x003900c0: 401a0607 00000000 401b0607 00000000 401c0607 00000000 401d0607 00000000
0x003900e0: 401e0607 00000000 401f0607 00000000 40000000 8a210002 40000000 8a210002

Do Not Trust Modern System-on-Chips May 10th, 2019 33 / 50

Fault on the MMU

Failure cause

Mostly unknown
Flushing TLB does not change anything.
The page tables do not match the mapping.
Flags have changed in the new page tables.

Other observations
Mapping is still correct for the program memory size.
Fault is reproducible,
but we do not achieve exactly the same mapping every time.
The new mapping is often invalid (translation error).

Do Not Trust Modern System-on-Chips May 10th, 2019 34 / 50

Fault on the MMU

Failure cause

Mostly unknown
Flushing TLB does not change anything.
The page tables do not match the mapping.
Flags have changed in the new page tables.

Other observations
Mapping is still correct for the program memory size.
Fault is reproducible,
but we do not achieve exactly the same mapping every time.
The new mapping is often invalid (translation error).

Do Not Trust Modern System-on-Chips May 10th, 2019 34 / 50

Fault on the MMU

MMU conclusion

Pointer authentication (PA)

PA, as in ARMv8.3, does not resist this fault model. Pointer security
should guarantee the translation phase too.

OS
The MMU management is done very diffirently with an (full) OS present:
pages are allocated on-the-fly.

No attacker control
The erroneous mapping is not controlled by the attacker, the danger is
therefore limited. For now ?

Do Not Trust Modern System-on-Chips May 10th, 2019 35 / 50

Fault on the MMU

MMU conclusion

Pointer authentication (PA)

PA, as in ARMv8.3, does not resist this fault model. Pointer security
should guarantee the translation phase too.

OS
The MMU management is done very diffirently with an (full) OS present:
pages are allocated on-the-fly.

No attacker control
The erroneous mapping is not controlled by the attacker, the danger is
therefore limited. For now ?

Do Not Trust Modern System-on-Chips May 10th, 2019 35 / 50

Fault on the MMU

MMU conclusion

Pointer authentication (PA)

PA, as in ARMv8.3, does not resist this fault model. Pointer security
should guarantee the translation phase too.

OS
The MMU management is done very diffirently with an (full) OS present:
pages are allocated on-the-fly.

No attacker control
The erroneous mapping is not controlled by the attacker, the danger is
therefore limited. For now ?

Do Not Trust Modern System-on-Chips May 10th, 2019 35 / 50

Fault on L2

Section 6

Fault on L2

Do Not Trust Modern System-on-Chips May 10th, 2019 36 / 50

Fault on L2

Yet another fault

Setup

Same code target (loop).
Change injection timing.
We investigate a crash.

Why this fault ?
A step by step execution with JTAG rapidly shows that we are trapped into
an infinite loop.

F1 and F2
The observed behavior is reproducible, but memory dumps show 2 variants:
F1 and F2.

Do Not Trust Modern System-on-Chips May 10th, 2019 37 / 50

Fault on L2

Comparing memory dumps

0x000489b8: d65f03c0 a9be7bfd 910003fd b9001fbf
0x000489c8: b9001bbf b90017bf 900001a0 912d2000
0x000489d8: d2802002 52800001 94000b28 97fefe67
0x000489e8: d2800040 97feffe2 94008765 940087ad
0x000489f8: b9001fbf 14000010 b9001bbf 14000008
0x00048a08: 940087c1 b94017a0 11000400 b90017a0
0x00048a18: b9401ba0 11000400 b9001ba0 b9401ba0
0x00048a28: 7100c41f 54fffeed b9401fa0 11000400

Figure: Correct dump.

0x000489d8: d2800040 97feffe2 00000002 00000008
0x000489e8: 00000002 00000008 910003fd b9001fbf
0x000489f8: b9001bbf b90017bf 11000400 b90017a0
0x00048a08: b9401ba0 11000400 b9001ba0 b9401ba0
0x00048a18: 7100c41f 54fffeed b9401fa0 11000400
0x00048a28: b9001fa0 b9401fa0 81040814 77777777

Figure: Faulty dump (F1). Underlined
instructions are part of the infinite loop.

0x000489f8: 940087c1 b94017a0 11000400 b90017a0
0x00048a08: b9401ba0 11000400 b9001ba0 b9401ba0
0x00048a18: 7100c41f 54fffeed b9401fa0 11000400
0x00048a28: b9001fa0 b9401fa0 7100c41f 54fffded

Figure: Faulty dump (F2).

Do Not Trust Modern System-on-Chips May 10th, 2019 38 / 50

Fault on L2

First observations for F1

0x000489d8: d2800040 97feffe2 00000002 00000008
0x000489e8: 00000002 00000008 910003fd b9001fbf
0x000489f8: b9001bbf b90017bf 11000400 b90017a0
0x00048a08: b9401ba0 11000400 b9001ba0 b9401ba0
0x00048a18: 7100c41f 54fffeed b9401fa0 11000400
0x00048a28: b9001fa0 b9401fa0 81040814 77777777

Figure: Faulty dump (F1).

We can observe the fault with JTAG! Fault is present in L1D.
We can confirm that what we get is what we see: by executing step by
step and checking side-effects.
What about F2 ?

Do Not Trust Modern System-on-Chips May 10th, 2019 39 / 50

Fault on L2

F2

0x000489f8: 940087c1 b94017a0 11000400 b90017a0
0x00048a08: b9401ba0 11000400 b9001ba0 b9401ba0
0x00048a18: 7100c41f 54fffeed b9401fa0 11000400
0x00048a28: b9001fa0 b9401fa0 7100c41f 54fffded

Figure: Faulty dump (F2).

0x000489d8: d2800040 97feffe2 00000002 00000008
0x000489e8: 00000002 00000008 910003fd b9001fbf
0x000489f8: b9001bbf b90017bf 11000400 b90017a0
0x00048a08: b9401ba0 11000400 b9001ba0 b9401ba0
0x00048a18: 7100c41f 54fffeed b9401fa0 11000400
0x00048a28: b9001fa0 b9401fa0 81040814 77777777

Figure: Faulty dump (F1).

Do Not Trust Modern System-on-Chips May 10th, 2019 40 / 50

Fault on L2

First observation for F2

0x000489f8: 940087c1 b94017a0 11000400 b90017a0
0x00048a08: b9401ba0 11000400 b9001ba0 b9401ba0
0x00048a18: 7100c41f 54fffeed b9401fa0 11000400
0x00048a28: b9001fa0 b9401fa0 7100c41f 54fffded

Figure: Faulty dump (F2).

Similar to F1 but for the first two instructions.
If we execute step by step, we observe F1 behavior. In particular
940087c1 encodes an unconditional branch that is not taken.

Do Not Trust Modern System-on-Chips May 10th, 2019 41 / 50

Fault on L2

Concluding that the fault is in L2

Counter-argument 1
A fault is present in the MMU: the mapping has been changed. But the
mapping is correct for the program space (up to 0x7FFFF).

Argument 1
If we invalidate L1I cache in both cases, nothing change.

Argument 2
If we invalidate L1D to point of coherency at 0x489f8 after F2, the dump
becomes the same as F1’s. F2 = error in L2 + error in L1D with respect to
L2.

Do Not Trust Modern System-on-Chips May 10th, 2019 42 / 50

Fault on L2

L2 conclusion

Cause
It appears that 128-bit blocks (< cache line size = 512-bit) are shifted
locally in memory. 128-bit is the size of the L2 interface to external
memory. A low Hamming weight fault on the address during a
memory transfer ? Equivalently, a specific MMU error that is not
observed with mapping reconstruction.

Lack of control
The attacker does not control the shifting. Exploitation depends heavily on
the application, sometimes all it takes is a single modified instruction.

Do Not Trust Modern System-on-Chips May 10th, 2019 43 / 50

Fault on L2

Graphical summary

Do Not Trust Modern System-on-Chips May 10th, 2019 44 / 50

Conclusion

Section 7

Conclusion

Do Not Trust Modern System-on-Chips May 10th, 2019 45 / 50

Conclusion

Synchronization

The problem
For a chip running at 1GHz, a clock cycle lasts 1ns. During this time, an
electrical signal can propagate to a 15cm distance at most. Jitter is
increased with more complex memory hierarchies.
Contrary to attacks on microcontrollers, it is not possible to
efficiently target one clock cycle.

But we do not care
Use jitter, and patience, to inject faults. You should eventually inject
to the correct timing (if possible).
Memory transfers are slow: faulting them is easier than targeting a
clock cycle.
RISC architectures: it takes many instructions to perform most tasks.
Leaving lots of opportunities to get exploitable failure.

Do Not Trust Modern System-on-Chips May 10th, 2019 46 / 50

Conclusion

Synchronization

The problem
For a chip running at 1GHz, a clock cycle lasts 1ns. During this time, an
electrical signal can propagate to a 15cm distance at most. Jitter is
increased with more complex memory hierarchies.
Contrary to attacks on microcontrollers, it is not possible to
efficiently target one clock cycle.

But we do not care
Use jitter, and patience, to inject faults. You should eventually inject
to the correct timing (if possible).
Memory transfers are slow: faulting them is easier than targeting a
clock cycle.
RISC architectures: it takes many instructions to perform most tasks.
Leaving lots of opportunities to get exploitable failure.

Do Not Trust Modern System-on-Chips May 10th, 2019 46 / 50

Conclusion

Countermeasures

Encrypt all the things!

The SoC is a network
Ensure confidentiality, integrity, authenticity between subsystems.
Prevent DoS (depending on the context).
Use hardened primitives.

At what cost?

Do Not Trust Modern System-on-Chips May 10th, 2019 47 / 50

Conclusion

Conclusion / Attacks

What we did
SoC computations can be disrupted by EMFI.
We demonstrate faults on L1I, MMU and L2.
The micro-architectural model is the most faithful model,
since the ISA model changes with the OS used!

What we didn’t do
Explore faults with muliple cores enabled,
impact of memory coherency.

Do Not Trust Modern System-on-Chips May 10th, 2019 48 / 50

Conclusion

Conclusion / Countermeasures

What should be done
The hardware is not a magically secure black box.
Secure hardware refoundation is necessary, required to run all critical
code (today at least all kernel code).
RISC-V is an opportunity to bring this renewal.

High performance, low power consumption, high security: pick one.

Do Not Trust Modern System-on-Chips May 10th, 2019 49 / 50

Conclusion

Thank you!

Any questions?

© Inria / Photo C. Morel

Do Not Trust Modern System-on-Chips May 10th, 2019 50 / 50

	In the previous episodes
	Related works
	The impact of the operating system
	Fault on L1I
	Fault on the MMU
	Fault on L2
	Conclusion

