
Do Not Trust Modern System-on-Chips
Electromagnetic fault injection against a System-on-Chip

Thomas Trouchkine 3 Sébanjila Kevin Bukasa 1 Mathieu
Escouteloup 1 Ronan Lashermes 2 Guillaume Bouffard 3

1INRIA/CIDRE 2INRIA/SED&LHS 3ANSSI

October 16th, 2019

PHISIC, Gardanne

Do Not Trust Modern System-on-Chips October 16th, 2019 1 / 24

(Really) short introduction

Section 1

(Really) short introduction

Do Not Trust Modern System-on-Chips October 16th, 2019 2 / 24

(Really) short introduction

Introduction

Objectives
EM fault attack on modern ARM SoC.
What fault models ?
Methods for characterization

ISA and micro-architectural layers
Top-down approach

Do Not Trust Modern System-on-Chips October 16th, 2019 3 / 24

(Really) short introduction

Content

1 (Really) short introduction

2 Fault on L1I

3 Fault on L2

4 Fault on the MMU

5 Conclusion

Do Not Trust Modern System-on-Chips October 16th, 2019 4 / 24

Fault on L1I

Section 2

Fault on L1I

Do Not Trust Modern System-on-Chips October 16th, 2019 5 / 24

Fault on L1I

Reminder on memory hierarchy

Do Not Trust Modern System-on-Chips October 16th, 2019 6 / 24

Fault on L1I

Targeted software (single-core)

Listing 1: Loop target application
trigger_up();
//wait to compensate bench latency
wait_us(2);
for(i = 0;i<50; i++) {
for(j = 0;j<50;j++) {
cnt++;

}
}
trigger_down();

Do Not Trust Modern System-on-Chips October 16th, 2019 7 / 24

Fault on L1I

Forensic

Just after a fault, we set the Program Counter to the start of the loop.
Then we execute step-by-step and check the side effects.

Listing 2: Loop target assembly
...
48a04: b94017a0 ldr w0, [x29,#20]
48a08: 11000400 add w0, w0, #0x1
48a0c: b90017a0 str w0, [x29,#20]
48a10: b9401ba0 ldr w0, [x29,#24]
48a14: 11000400 add w0, w0, #0x1
48a18: b9001ba0 str w0, [x29,#24]
48a1c: b9401ba0 ldr w0, [x29,#24]
48a20: 7100c41f cmp w0, #0x31
48a24: 54 ffff0d b. le 48a04
...

pc: 0x48a04
> reg x0
x0 (/64): 0x1
> step
pc: 0x48a08
> reg x0
x0 (/64): 0x2
> step
pc: 0x48a0c
> reg x0
x0 (/64): 0x2
> mdw 0x48a08 1
0x00048a08: 11000400

Figure: JTAG session

Do Not Trust Modern System-on-Chips October 16th, 2019 8 / 24

Fault on L1I

Confirming micro-architectural model

Do Not Trust Modern System-on-Chips October 16th, 2019 9 / 24

Fault on L1I

Confirming micro-architectural model

How to confirm ?
Invalidate L1I cache by executing corresponding instruction.

> reg pc 0x6a784
pc (/64): 0x000000000006A784
> step => IC IALLU
pc: 0x6a788
> step => ISB
pc: 0x6a78c
> reg pc 0x48a08
pc (/64): 0x0000000000048A08
> reg x0
x0 (/64): 0x0000000000000002
> step
pc: 0x48a0c
> reg x0
x0 (/64): 0x0000000000000003

Figure: JTAG session
Do Not Trust Modern System-on-Chips October 16th, 2019 9 / 24

Fault on L1I

Failure cause

Hypothesis
Fault present only on first execution,
and fault has an impact on L1I.

The fault occurs on a memory transfer when writing instructions to L1I.

Do Not Trust Modern System-on-Chips October 16th, 2019 10 / 24

Fault on L1I

Failure cause

Hypothesis
Fault present only on first execution,
and fault has an impact on L1I.

The fault occurs on a memory transfer when writing instructions to L1I.

Listing 3: Loop target assembly
trigger_up() ;
wait_us(2);
/∗ + ∗/invalidate_icache() ;
for (i = 0;i<50; i++) {
for (j = 0;j<50;j++) {
cnt++;

}
}
trigger_down();

Observations
Now, we can reproduce the previous
fault, if we inject during the cache
reload (lasts 2µs).

Do Not Trust Modern System-on-Chips October 16th, 2019 10 / 24

Fault on L2

Section 3

Fault on L2

Do Not Trust Modern System-on-Chips October 16th, 2019 11 / 24

Fault on L2

Yet another fault

Setup

Nearly same code target (loop).
Change injection timing.
We investigate a crash (with respect to our application).

Why this fault ?
A step by step execution with JTAG rapidly shows that we are trapped into
an infinite loop.

Do Not Trust Modern System-on-Chips October 16th, 2019 12 / 24

Fault on L2

Comparing memory dumps

0x000489b8: d65f03c0 a9be7bfd 910003fd b9001fbf
0x000489c8: b9001bbf b90017bf 900001a0 912d2000
0x000489d8: d2802002 52800001 94000b28 97fefe67
0x000489e8: d2800040 97feffe2 94008765 940087ad
0x000489f8: b9001fbf 14000010 b9001bbf 14000008
0x00048a08: 940087c1 b94017a0 11000400 b90017a0
0x00048a18: b9401ba0 11000400 b9001ba0 b9401ba0
0x00048a28: 7100c41f 54fffeed b9401fa0 11000400

Figure: Correct dump.

0x000489d8: d2800040 97feffe2 00000002 00000008
0x000489e8: 00000002 00000008 910003fd b9001fbf
0x000489f8: b9001bbf b90017bf 11000400 b90017a0
0x00048a08: b9401ba0 11000400 b9001ba0 b9401ba0
0x00048a18: 7100c41f 54fffeed b9401fa0 11000400
0x00048a28: b9001fa0 b9401fa0 81040814 77777777

Figure: Faulty dump. Underlined
instructions are part of the infinite loop.

Do Not Trust Modern System-on-Chips October 16th, 2019 13 / 24

Fault on L2

Graphical summary

Do Not Trust Modern System-on-Chips October 16th, 2019 14 / 24

Fault on the MMU

Section 4

Fault on the MMU

Do Not Trust Modern System-on-Chips October 16th, 2019 15 / 24

Fault on the MMU

Reminder on the MMU

Principle

Do Not Trust Modern System-on-Chips October 16th, 2019 16 / 24

Fault on the MMU

Reminder on the MMU

Principle

Do Not Trust Modern System-on-Chips October 16th, 2019 16 / 24

Fault on the MMU

Correct memory mapping

Identity Mapping
VA -> PA
0x0 -> 0x0 0x80000 -> 0x80000
0x10000 -> 0x10000 0x90000 -> 0x90000
0x20000 -> 0x20000 0xa0000 -> 0xa0000
0x30000 -> 0x30000 0xb0000 -> 0xb0000
0x40000 -> 0x40000 0xc0000 -> 0xc0000
0x50000 -> 0x50000 0xd0000 -> 0xd0000
0x60000 -> 0x60000 0xe0000 -> 0xe0000
0x70000 -> 0x70000 0xf0000 -> 0xf0000

Do Not Trust Modern System-on-Chips October 16th, 2019 17 / 24

Fault on the MMU

Faulting the MMU

Setup

Same code target (loop).
Change injection timing (target the end of L1I loading).
In this case, we investigate a crash (the application did not provide a
result).

Voilà !

Do Not Trust Modern System-on-Chips October 16th, 2019 18 / 24

Fault on the MMU

Faulty mapping

VA -> PA
0x0 -> 0x0 0x100000 -> 0x0
0x10000 -> 0x10000 0x110000 -> 0x0
0x20000 -> 0x20000 0x120000 -> 0x0
0x30000 -> 0x30000 0x130000 -> 0x0
0x40000 -> 0x40000 0x140000 -> 0x100000
0x50000 -> 0x50000 0x150000 -> 0x110000
0x60000 -> 0x60000 0x160000 -> 0x120000
0x70000 -> 0x70000 0x170000 -> 0x130000
0x80000 -> 0x0 0x180000 -> 0x0
0x90000 -> 0x0 0x190000 -> 0x0
0xa0000 -> 0x0 0x1a0000 -> 0x0
0xb0000 -> 0x0 0x1b0000 -> 0x0
0xc0000 -> 0x80000 0x1c0000 -> 0x180000
0xd0000 -> 0x90000 0x1d0000 -> 0x190000
0xe0000 -> 0xa0000 0x1e0000 -> 0x1a0000
0xf0000 -> 0xb0000 0x1f0000 -> 0x1b0000

This is a working mapping !
Do Not Trust Modern System-on-Chips October 16th, 2019 19 / 24

Fault on the MMU

Failure cause

Mostly unknown
Flushing TLB does not change anything.
The page tables are modified but do not match the mapping.
Flags have changed in the new page tables.

Other observations
Mapping is still correct for the program memory size.
Fault is reproducible,
but we do not achieve exactly the same mapping every time.
The new mapping is often invalid (translation error).

Do Not Trust Modern System-on-Chips October 16th, 2019 20 / 24

Fault on the MMU

Failure cause

Mostly unknown
Flushing TLB does not change anything.
The page tables are modified but do not match the mapping.
Flags have changed in the new page tables.

Other observations
Mapping is still correct for the program memory size.
Fault is reproducible,
but we do not achieve exactly the same mapping every time.
The new mapping is often invalid (translation error).

Do Not Trust Modern System-on-Chips October 16th, 2019 20 / 24

Fault on the MMU

MMU conclusion

Pointer authentication (PA)

PA, as in ARMv8.3, does not resist this fault model. Pointer security
should guarantee the translation phase too.

OS
The MMU management is done very differently with an (full) OS present:
pages are allocated on-the-fly.

No attacker control
The erroneous mapping is not controlled by the attacker, the danger is
therefore limited. For now ?

Do Not Trust Modern System-on-Chips October 16th, 2019 21 / 24

Fault on the MMU

MMU conclusion

Pointer authentication (PA)

PA, as in ARMv8.3, does not resist this fault model. Pointer security
should guarantee the translation phase too.

OS
The MMU management is done very differently with an (full) OS present:
pages are allocated on-the-fly.

No attacker control
The erroneous mapping is not controlled by the attacker, the danger is
therefore limited. For now ?

Do Not Trust Modern System-on-Chips October 16th, 2019 21 / 24

Fault on the MMU

MMU conclusion

Pointer authentication (PA)

PA, as in ARMv8.3, does not resist this fault model. Pointer security
should guarantee the translation phase too.

OS
The MMU management is done very differently with an (full) OS present:
pages are allocated on-the-fly.

No attacker control
The erroneous mapping is not controlled by the attacker, the danger is
therefore limited. For now ?

Do Not Trust Modern System-on-Chips October 16th, 2019 21 / 24

Conclusion

Section 5

Conclusion

Do Not Trust Modern System-on-Chips October 16th, 2019 22 / 24

Conclusion

Conclusion / Attacks

SoC computations can be disrupted by EMFI.
We demonstrate faults on the pipeline, L1I, MMU and L2.
We propose a methodology for fault model determination.

Do Not Trust Modern System-on-Chips October 16th, 2019 23 / 24

Conclusion

Thank you!

Any questions?

© Inria / Photo C. Morel

Do Not Trust Modern System-on-Chips October 16th, 2019 24 / 24

Fault on instructions,-,Characterization methodology

Section 6

Fault on instructions
-

Characterization methodology

Do Not Trust Modern System-on-Chips October 16th, 2019 25 / 24

Fault on instructions,-,Characterization methodology

Determination of hotspots

0 5 10 15 20 25 30 35

X position

0

5

10

15

20

25

30

35

Y
po

sit
io

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Crashes Bare-metal

0 5 10 15 20 25 30 35

X position

0

5

10

15

20

25

30

35

Y
po

sit
io

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Crashes on Linux
0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35 0

1

2

3

4

Faults on Linux
Do Not Trust Modern System-on-Chips October 16th, 2019 26 / 24

Fault on instructions,-,Characterization methodology

Characterization generic methodology

1 Determination of possible error E induced by the perturbation

vf = E (v)

2 Fault hypothesis from error E

v ′fh = E (v ′)

3 Experimental confirmation

v ′fr = E (v ′)

4 Conclusion
v ′fh = v ′fr ?

Do Not Trust Modern System-on-Chips October 16th, 2019 27 / 24

Fault on instructions,-,Characterization methodology

Code under test

Pipeline characterization
only data processing instructions
no instructions changing state

Code example:

mov r3,r3
.
. /* 100 times */
.
mov r3,r3

nop
mov rX, rX
and rX, rX
orr rX, rX

Do Not Trust Modern System-on-Chips October 16th, 2019 28 / 24

Fault on instructions,-,Characterization methodology

Opcode analysis

mov r0, r0
r0 <= r0

Pattern of the faulted value

Other register
value

All 0 Or with
other reg

Unknown
0

20

40

60

80

%

check on r0 to r9

the operand doesn’t change
(80%)
rX <= rY

Do Not Trust Modern System-on-Chips October 16th, 2019 29 / 24

Fault on instructions,-,Characterization methodology

Opcode analysis

or r0, r0
r0 <= r0 or r0

Pattern of the faulted value

Or with
other register

Or between
2 different
registers

Unknown
0

20

40

60

% rX <= rY or rX (70%)
rX <= rY or rZ (20%)

Do Not Trust Modern System-on-Chips October 16th, 2019 30 / 24

Fault on instructions,-,Characterization methodology

Destination analysis

mov r0, r0
mov r3, r3

Number of faults per register

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9
0

20

40

60

80

%

mov r0,r0
mov r3,r3

destination register doesn’t
change (75%)
r0 <= rX

Do Not Trust Modern System-on-Chips October 16th, 2019 31 / 24

Fault on instructions,-,Characterization methodology

Operands analysis

mov rX, rX
or rX, rX
X ∈ [0, 9]

Value in the faulted register

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9
0

10

20

30

40

50

%

mov rX,rX
or rX,rX

all registers faulted with same
probability
rX <= r{0,1}

second operand set to 0 or 1

Do Not Trust Modern System-on-Chips October 16th, 2019 32 / 24

Fault on instructions,-,Characterization methodology

Example of exploitation

Targeting cmp instruction

init: r3 <= 0xff

cmp r3, #255
bne fault
b nofault

fault: mov r9, #170
b end

nofault: mov r9, #85
end: nop

cmp bypassed r0 = 0xfffcb924 Unknown
0

20

40

60

80

%

Do Not Trust Modern System-on-Chips October 16th, 2019 33 / 24

	(Really) short introduction
	Fault on L1I
	Fault on L2
	Fault on the MMU
	Conclusion
	Appendix
	Fault on instructions - Characterization methodology

