
Why there is no silver bullet to solve our security issues

Ronan Lashermes 1

1INRIA/SED&LHS

November 5th, 2019

ENS, Rennes

R. Lashermes No silver bullet November 5th, 2019 1 / 30

Introduction

Section 1

Introduction

R. Lashermes No silver bullet November 5th, 2019 2 / 30

Introduction

A small enigma

R. Lashermes No silver bullet November 5th, 2019 3 / 30

How software can go wrong

Section 2

How software can go wrong

R. Lashermes No silver bullet November 5th, 2019 4 / 30

How software can go wrong

Designing a PIN verification

Your mission
In order to enter a very secure room, the visitor must insert her personal
smartcard and enter the corresponding unique valid PIN. If the card and
the PIN match, the visitor can enter. If not, she has 3 attempts or she
faces jail time.

R. Lashermes No silver bullet November 5th, 2019 5 / 30

How software can go wrong

Initial proposal, spot the vulnerabilities

#define PIN_SIZE 4
#define MAX_TRY 3
typedef unsigned char BYTE;

int try_counter = MAX_TRY;
BYTE pin_correct[PIN_SIZE];
BYTE pin_candidat[PIN_SIZE];

void enter_pin () {
printf("A␣PIN␣has␣%d␣digits.", PIN_SIZE);
printf("Please␣enter␣PIN:␣");
scanf("%s", pin_candidat);

}

bool compare_arrays(// memcmp
BYTE *arr1 ,
BYTE *arr2) {
for(int i = 0; i < PIN_SIZE; i++) {

if(arr1[i]!= arr2[i]) return false; }
return true;

}

void verify_pin(
BYTE *pin_candidat ,
BYTE *pin_correct) {
if(compare_arrays(

pin_candidat ,
pin_correct) == true) { // PIN ok

try_counter = MAX_TRY;
authenticate ();

} else { // PIN not correct
try_counter -= 1;
if(try_counter <= 0) {

kill (); }
else {

incorrect (); }
}

}

R. Lashermes No silver bullet November 5th, 2019 6 / 30

How software can go wrong

Buffer overflow

int try_counter = MAX_TRY;
BYTE pin_correct[PIN_SIZE];
BYTE pin_candidat[PIN_SIZE];

void enter_pin () {

printf("A␣PIN␣has␣%d␣digits.", PIN_SIZE);
printf("Please␣enter␣PIN:␣");
scanf("%s", pin_candidat);

}

Exploit

> A PIN has 4 digits.
> Please enter your PIN: aaaaaaaa
> PIN ok.

Solutions
Google gives you 6950000 results. Some examples:

Canaries.
Do not use scanf, better variants exist.
...

R. Lashermes No silver bullet November 5th, 2019 7 / 30

How software can go wrong

Buffer overflow

int try_counter = MAX_TRY;
BYTE pin_correct[PIN_SIZE];
BYTE pin_candidat[PIN_SIZE];

void enter_pin () {

printf("A␣PIN␣has␣%d␣digits.", PIN_SIZE);
printf("Please␣enter␣PIN:␣");
scanf("%s", pin_candidat);

}

Exploit

> A PIN has 4 digits.
> Please enter your PIN: aaaaaaaa
> PIN ok.

Solutions
Google gives you 6950000 results. Some examples:

Canaries.
Do not use scanf, better variants exist.
...

R. Lashermes No silver bullet November 5th, 2019 7 / 30

How software can go wrong

Buffer overflow

int try_counter = MAX_TRY;
BYTE pin_correct[PIN_SIZE];
BYTE pin_candidat[PIN_SIZE];

void enter_pin () {

printf("A␣PIN␣has␣%d␣digits.", PIN_SIZE);
printf("Please␣enter␣PIN:␣");
scanf("%s", pin_candidat);

}

Exploit

> A PIN has 4 digits.
> Please enter your PIN: aaaaaaaa
> PIN ok.

Solutions
Google gives you 6950000 results. Some examples:

Canaries.
Do not use scanf, better variants exist.
...

R. Lashermes No silver bullet November 5th, 2019 7 / 30

How software can go wrong

My take: this is a language design problem

Figure: Door picture from
uxdesign.cc

Securely programming in C is like
playing with a loaded gun. Of
course it can end well, but you
should probably not be doing it.

R. Lashermes No silver bullet November 5th, 2019 8 / 30

How software can go wrong

Proof-oriented software1

Formal methods
Being able to write bug-free programs is one of the goal of formal
languages such as Coq, Lean, and numerous others. They use the
Curry-Howard correspondance to reduce writing a correct program to
proving a mathematical proof.

But
A mathematical proof is something abstract while an executed
program has a physical existence. A point already made in 1988 in
“Program verification: the very idea” by J.H. Fetze.
There is a reason even mathematicians do not use these tools
pervasively (cf the talks and writing of Kevin Buzzard).

1I made up this expression, don’t google it
R. Lashermes No silver bullet November 5th, 2019 9 / 30

How software can go wrong

Against the clock

bool compare_arrays(// memcmp
BYTE *arr1 ,
BYTE *arr2) {
for(int i = 0; i < PIN_SIZE; i++) {

if(arr1[i]!= arr2[i]) return false; }
return true;

}

Timing leakage
Supposing illimited tries, measure the duration of the compare_arrays
function.

> Please enter your PIN: 1111 => 3us
> Please enter your PIN: 2222 => 3us
> Please enter your PIN: 3333 => 3us
> Please enter your PIN: 4444 => 4us
> Please enter your PIN: 4111 => 4us
> Please enter your PIN: 4211 => 6us
> Please enter your PIN: 4212 => 6us
> Please enter your PIN: 4213 => 7us
> PIN ok.

R. Lashermes No silver bullet November 5th, 2019 10 / 30

How software can go wrong

Constant-time implementations

bool compare_arrays(// memcmp
BYTE *arr1 ,
BYTE *arr2) {
BYTE diff = 0;
for(int i = 0 ; i < PIN_SIZE ; i++)

diff &= arr1[i] ^ arr2[i];
return diff == 0;

}

What guarantees constant-time
execution ?

Figure: Going down the rabbit hole

R. Lashermes No silver bullet November 5th, 2019 11 / 30

How software can go wrong

Constant-time implementations

bool compare_arrays(// memcmp
BYTE *arr1 ,
BYTE *arr2) {
BYTE diff = 0;
for(int i = 0 ; i < PIN_SIZE ; i++)

diff &= arr1[i] ^ arr2[i];
return diff == 0;

}

What guarantees constant-time
execution ?

Figure: Going down the rabbit hole

R. Lashermes No silver bullet November 5th, 2019 11 / 30

How hardware can go wrong

Section 3

How hardware can go wrong

R. Lashermes No silver bullet November 5th, 2019 12 / 30

How hardware can go wrong

Cache-timing attacks

What variable(s) leaks ? (x, y, arr)

int x = arr[y];

Figure: Memory hierarchy

R. Lashermes No silver bullet November 5th, 2019 13 / 30

How hardware can go wrong

Cache-timing attacks

What variable(s) leaks ? (x, y, arr)

int x = arr[y];

Figure: Memory hierarchy

R. Lashermes No silver bullet November 5th, 2019 13 / 30

How hardware can go wrong

Meltdown and Spectre

Micro-architecture
The implementation of the instruction set architecture (ISA).

Attacks’ principle
Read somewhere in forbidden memory, using transient instructions. Use
cache-timing to recover the result.

Recover kernel data from application (Spectre)

if(x < array1_size)
y = array2[array1[x]*4096];

Attacker controls x and wants to read arbitrarily in memory.

R. Lashermes No silver bullet November 5th, 2019 14 / 30

How hardware can go wrong

Meltdown and Spectre

Micro-architecture
The implementation of the instruction set architecture (ISA).

Attacks’ principle
Read somewhere in forbidden memory, using transient instructions. Use
cache-timing to recover the result.

Recover kernel data from application (Spectre)

if(x < array1_size)
y = array2[array1[x]*4096];

Attacker controls x and wants to read arbitrarily in memory.

R. Lashermes No silver bullet November 5th, 2019 14 / 30

How hardware can go wrong

Meltdown and Spectre

Micro-architecture
The implementation of the instruction set architecture (ISA).

Attacks’ principle
Read somewhere in forbidden memory, using transient instructions. Use
cache-timing to recover the result.

Recover kernel data from application (Spectre)

if(x < array1_size)
y = array2[array1[x]*4096];

Attacker controls x and wants to read arbitrarily in memory.

R. Lashermes No silver bullet November 5th, 2019 14 / 30

How hardware can go wrong

Side-channel analysis

R. Lashermes No silver bullet November 5th, 2019 15 / 30

How hardware can go wrong

Correlation Power Analysis

R. Lashermes No silver bullet November 5th, 2019 16 / 30

How hardware can go wrong

SCA against PIN verification

Template attack
Learn the leakage on a controlled device.
Measure on the target device and compare
(Mahalanobis distance).

0

0.02

0.04

0.06

0.08

0.1

F 0
(T

,k
)

0 2 4 6 8
guesses k

0.1106

0.1108

0.111

0.1112

0.1114

0.1116

0.1118

F 0
(T

,k
)

2 4 6 8
guesses k

R. Lashermes No silver bullet November 5th, 2019 17 / 30

How hardware can go wrong

Protecting against SCA

Masking

We want to protect s when computing o = f (s), with f linear. Generate a
truly random value r , then mask the secret: s ⊕ r .
Finally, you can compute o without depending on the secret value:

o = f (r)⊕ f (s ⊕ r).

R. Lashermes No silver bullet November 5th, 2019 18 / 30

How hardware can go wrong

Fault injection attacks

R. Lashermes No silver bullet November 5th, 2019 19 / 30

How hardware can go wrong

Fault activated backdoor

void blink_wait ()
{

unsigned int wait_for = 3758874636;
unsigned int counter;
for(counter = 0; counter < wait_for; counter += 8000000);

}

R. Lashermes No silver bullet November 5th, 2019 20 / 30

How hardware can go wrong

Fault activated backdoor

void blink_wait ()
{

unsigned int wait_for = 3758874636;
unsigned int counter;
for(counter = 0; counter < wait_for; counter += 8000000);

}

08000598 <blink_wait >:
push {r7, lr}
sub sp, #8
add r7, sp , #0
ldr r3, [pc , #44] ; (80005 cc <blink_wait +0x34 >)
...
adds r7, #8
mov sp, r7
pop {r7 , pc}
.word 0xe00be00c ; @80005cc , 0xe00be00c = 3758874636

R. Lashermes No silver bullet November 5th, 2019 20 / 30

How hardware can go wrong

Fault activated backdoor

void blink_wait ()
{

unsigned int wait_for = 3758874636;
unsigned int counter;
for(counter = 0; counter < wait_for; counter += 8000000);

}

08000598 <blink_wait >:
push {r7, lr}
sub sp, #8
add r7, sp , #0
ldr r3, [pc , #44] ; (80005 cc <blink_wait +0x34 >)
...
adds r7, #8
mov sp, r7
nop ; pop {r7, pc}
b other_verif ;.word (0xe00b)e00c
b other_verif ;.word 0xe00b(e00c)

R. Lashermes No silver bullet November 5th, 2019 20 / 30

How hardware can go wrong

Faults on the memory hierarchy

R. Lashermes No silver bullet November 5th, 2019 21 / 30

How hardware can go wrong

FIA against PIN verification

void verify_pin(BYTE *pin_candidat , BYTE *pin_correct) {
if(compare_arrays(pin_candidat , pin_correct) == true) { // PIN ok

try_counter = MAX_TRY;
authenticate ();

}
else { // PIN not correct

try_counter -= 1;
if (try_counter <= 0) {

kill ();
}
else {

incorrect ();
}

}
}

R. Lashermes No silver bullet November 5th, 2019 22 / 30

How hardware can go wrong

Protecting PIN verification against fault attacks

Duplicate all the things !

void verify_pin(BYTE *pin_candidat , BYTE *pin_correct) {
if(compare_arrays(pin_candidat , pin_correct) == true) { // PIN ok 1

if (compare_arrays(pin_candidat , pin_correct) == true) { //PIN ok 2
try_counter = MAX_TRY;
authenticate ();

}
}
else { // PIN not correct

try_counter -= 1;
if (try_counter <= 0) {

kill ();
}
else {

incorrect ();
}

}
}

Actually really painful. What if the attacker can inject 2 faults ?

R. Lashermes No silver bullet November 5th, 2019 23 / 30

How hardware can go wrong

Protecting PIN verification against fault attacks

Duplicate all the things !

void verify_pin(BYTE *pin_candidat , BYTE *pin_correct) {
if(compare_arrays(pin_candidat , pin_correct) == true) { // PIN ok 1

if (compare_arrays(pin_candidat , pin_correct) == true) { //PIN ok 2
try_counter = MAX_TRY;
authenticate ();

}
}
else { // PIN not correct

try_counter -= 1;
if (try_counter <= 0) {

kill ();
}
else {

incorrect ();
}

}
}

Actually really painful. What if the attacker can inject 2 faults ?

R. Lashermes No silver bullet November 5th, 2019 23 / 30

Hardened PIN verification

Section 4

Hardened PIN verification

R. Lashermes No silver bullet November 5th, 2019 24 / 30

Hardened PIN verification

Implementation countermeasures

Input sanitization.
Formal methods to detect implementations not meeting specifications.
Constant-time implementation.
Redundancy against FIA.
Masking against SCA.

If one of these countermeasures is too weak, your implementation is
unsecure. (The weakest link rule)

Can we do better ?

R. Lashermes No silver bullet November 5th, 2019 25 / 30

Hardened PIN verification

Implementation countermeasures

Input sanitization.
Formal methods to detect implementations not meeting specifications.
Constant-time implementation.
Redundancy against FIA.
Masking against SCA.

If one of these countermeasures is too weak, your implementation is
unsecure. (The weakest link rule)

Can we do better ?

R. Lashermes No silver bullet November 5th, 2019 25 / 30

Hardened PIN verification

Changing the protocol

Cryptography to the rescue
It would be better if the secret were not present inside the chip, but
verification still possible.

Solution
Generate pin, key when enrolling the smartcard. Store

(key , commited = HMAC (key , pin)).

Now to verify pin_try , the smartcard computes

hash_try = HMAC (key , pin_try).

And we compare commited and hash_try .

R. Lashermes No silver bullet November 5th, 2019 26 / 30

Hardened PIN verification

Advantages

The secret can be forgotten, no pin value to recover.
Comparison do not require to be secure.
The embedded key prevents to compare leakage from two devices.

But fault attacks are still possible.

R. Lashermes No silver bullet November 5th, 2019 27 / 30

Conclusion

Section 5

Conclusion

R. Lashermes No silver bullet November 5th, 2019 28 / 30

Conclusion

Leaking interfaces

Interfaces between abstraction do not define security properties. As a
result, they leak information.
You cannot implement a secure functionality without taking into account
all abstraction layers (protocol, algorithms, software, hardware).

R. Lashermes No silver bullet November 5th, 2019 29 / 30

Conclusion

Thank you!

Any questions?

© Inria / Photo C. Morel

R. Lashermes No silver bullet November 5th, 2019 30 / 30

	Introduction
	How software can go wrong
	How hardware can go wrong
	Hardened PIN verification
	Conclusion

