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Introduction

A small enigma
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How software can go wrong

Designing a PIN verification

Your mission
In order to enter a very secure room, the visitor must insert her personal
smartcard and enter the corresponding unique valid PIN. If the card and
the PIN match, the visitor can enter. If not, she has 3 attempts or she
faces jail time.
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How software can go wrong

Initial proposal, spot the vulnerabilities

#define PIN_SIZE 4
#define MAX_TRY 3
typedef unsigned char BYTE;

int try_counter = MAX_TRY;
BYTE pin_correct[PIN_SIZE ];
BYTE pin_candidat[PIN_SIZE ];

void enter_pin () {
printf("A␣PIN␣has␣%d␣digits.", PIN_SIZE );
printf("Please␣enter␣PIN:␣");
scanf("%s", pin_candidat );

}

bool compare_arrays( // memcmp
BYTE *arr1 ,
BYTE *arr2) {
for(int i = 0; i < PIN_SIZE; i++) {

if(arr1[i]!= arr2[i]) return false; }
return true;

}

void verify_pin(
BYTE *pin_candidat ,
BYTE *pin_correct) {
if(compare_arrays(

pin_candidat ,
pin_correct) == true) { // PIN ok

try_counter = MAX_TRY;
authenticate ();

} else { // PIN not correct
try_counter -= 1;
if(try_counter <= 0) {

kill (); }
else {

incorrect (); }
}

}
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How software can go wrong

Buffer overflow

int try_counter = MAX_TRY;
BYTE pin_correct[PIN_SIZE ];
BYTE pin_candidat[PIN_SIZE ];

void enter_pin () {

printf("A␣PIN␣has␣%d␣digits.", PIN_SIZE );
printf("Please␣enter␣PIN:␣");
scanf("%s", pin_candidat );

}

Exploit

> A PIN has 4 digits.
> Please enter your PIN: aaaaaaaa
> PIN ok.

Solutions
Google gives you 6950000 results. Some examples:

Canaries.
Do not use scanf, better variants exist.
...
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How software can go wrong

My take: this is a language design problem

Figure: Door picture from
uxdesign.cc

Securely programming in C is like
playing with a loaded gun. Of
course it can end well, but you
should probably not be doing it.
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How software can go wrong

Proof-oriented software1

Formal methods
Being able to write bug-free programs is one of the goal of formal
languages such as Coq, Lean, and numerous others. They use the
Curry-Howard correspondance to reduce writing a correct program to
proving a mathematical proof.

But
A mathematical proof is something abstract while an executed
program has a physical existence. A point already made in 1988 in
“Program verification: the very idea” by J.H. Fetze.
There is a reason even mathematicians do not use these tools
pervasively (cf the talks and writing of Kevin Buzzard).

1I made up this expression, don’t google it
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How software can go wrong

Against the clock

bool compare_arrays( // memcmp
BYTE *arr1 ,
BYTE *arr2) {
for(int i = 0; i < PIN_SIZE; i++) {

if(arr1[i]!= arr2[i]) return false; }
return true;

}

Timing leakage
Supposing illimited tries, measure the duration of the compare_arrays
function.

> Please enter your PIN: 1111 => 3us
> Please enter your PIN: 2222 => 3us
> Please enter your PIN: 3333 => 3us
> Please enter your PIN: 4444 => 4us
> Please enter your PIN: 4111 => 4us
> Please enter your PIN: 4211 => 6us
> Please enter your PIN: 4212 => 6us
> Please enter your PIN: 4213 => 7us
> PIN ok.
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How software can go wrong

Constant-time implementations

bool compare_arrays( // memcmp
BYTE *arr1 ,
BYTE *arr2) {
BYTE diff = 0;
for(int i = 0 ; i < PIN_SIZE ; i++)

diff &= arr1[i] ^ arr2[i];
return diff == 0;

}

What guarantees constant-time
execution ?

Figure: Going down the rabbit hole
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How hardware can go wrong

Section 3

How hardware can go wrong
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How hardware can go wrong

Cache-timing attacks

What variable(s) leaks ? (x, y, arr)

int x = arr[y];

Figure: Memory hierarchy
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How hardware can go wrong

Meltdown and Spectre

Micro-architecture
The implementation of the instruction set architecture (ISA).

Attacks’ principle
Read somewhere in forbidden memory, using transient instructions. Use
cache-timing to recover the result.

Recover kernel data from application (Spectre)

if(x < array1_size)
y = array2[array1[x]*4096];

Attacker controls x and wants to read arbitrarily in memory.
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How hardware can go wrong

Side-channel analysis
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How hardware can go wrong

Correlation Power Analysis
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How hardware can go wrong

SCA against PIN verification

Template attack
Learn the leakage on a controlled device.
Measure on the target device and compare
(Mahalanobis distance).
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How hardware can go wrong

Protecting against SCA

Masking

We want to protect s when computing o = f (s), with f linear. Generate a
truly random value r , then mask the secret: s ⊕ r .
Finally, you can compute o without depending on the secret value:

o = f (r)⊕ f (s ⊕ r).

R. Lashermes No silver bullet November 5th, 2019 18 / 30



How hardware can go wrong

Fault injection attacks
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How hardware can go wrong

Fault activated backdoor

void blink_wait ()
{

unsigned int wait_for = 3758874636;
unsigned int counter;
for(counter = 0; counter < wait_for; counter += 8000000);

}
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How hardware can go wrong

Fault activated backdoor

void blink_wait ()
{

unsigned int wait_for = 3758874636;
unsigned int counter;
for(counter = 0; counter < wait_for; counter += 8000000);

}

08000598 <blink_wait >:
push {r7, lr}
sub sp, #8
add r7, sp , #0
ldr r3, [pc , #44] ; (80005 cc <blink_wait +0x34 >)
...
adds r7, #8
mov sp, r7
pop {r7 , pc}
.word 0xe00be00c ; @80005cc , 0xe00be00c = 3758874636
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How hardware can go wrong

Fault activated backdoor

void blink_wait ()
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unsigned int wait_for = 3758874636;
unsigned int counter;
for(counter = 0; counter < wait_for; counter += 8000000);

}

08000598 <blink_wait >:
push {r7, lr}
sub sp, #8
add r7, sp , #0
ldr r3, [pc , #44] ; (80005 cc <blink_wait +0x34 >)
...
adds r7, #8
mov sp, r7
nop ; pop {r7, pc}
b other_verif ;.word (0xe00b)e00c
b other_verif ;.word 0xe00b(e00c)
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How hardware can go wrong

Faults on the memory hierarchy
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How hardware can go wrong

FIA against PIN verification

void verify_pin(BYTE *pin_candidat , BYTE *pin_correct) {
if(compare_arrays(pin_candidat , pin_correct) == true) { // PIN ok

try_counter = MAX_TRY;
authenticate ();

}
else { // PIN not correct

try_counter -= 1;
if (try_counter <= 0) {

kill ();
}
else {

incorrect ();
}

}
}
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How hardware can go wrong

Protecting PIN verification against fault attacks

Duplicate all the things !

void verify_pin(BYTE *pin_candidat , BYTE *pin_correct) {
if(compare_arrays(pin_candidat , pin_correct) == true) { // PIN ok 1

if (compare_arrays(pin_candidat , pin_correct) == true) { //PIN ok 2
try_counter = MAX_TRY;
authenticate ();

}
}
else { // PIN not correct

try_counter -= 1;
if (try_counter <= 0) {

kill ();
}
else {

incorrect ();
}

}
}

Actually really painful. What if the attacker can inject 2 faults ?
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Hardened PIN verification

Section 4

Hardened PIN verification
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Hardened PIN verification

Implementation countermeasures

Input sanitization.
Formal methods to detect implementations not meeting specifications.
Constant-time implementation.
Redundancy against FIA.
Masking against SCA.

If one of these countermeasures is too weak, your implementation is
unsecure. (The weakest link rule)

Can we do better ?
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Hardened PIN verification

Changing the protocol

Cryptography to the rescue
It would be better if the secret were not present inside the chip, but
verification still possible.

Solution
Generate pin, key when enrolling the smartcard. Store

(key , commited = HMAC (key , pin)).

Now to verify pin_try , the smartcard computes

hash_try = HMAC (key , pin_try).

And we compare commited and hash_try .
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Hardened PIN verification

Advantages

The secret can be forgotten, no pin value to recover.
Comparison do not require to be secure.
The embedded key prevents to compare leakage from two devices.

But fault attacks are still possible.
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Conclusion

Section 5
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Conclusion

Leaking interfaces

Interfaces between abstraction do not define security properties. As a
result, they leak information.
You cannot implement a secure functionality without taking into account
all abstraction layers (protocol, algorithms, software, hardware).
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Conclusion

Thank you!

Any questions?

© Inria / Photo C. Morel
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