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Arithmetic Our architecture Results

Introduction

Public key cryptography is still costly (computing resources).
Elliptic Curve Cryptography has a better cost/security
trade-off w.r.t. RSA.
We can still reduce the cost with better hardware
architectures.
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Arithmetic Our architecture Results

ECC

Elliptic Curve Cryptography (ECC)

Why?
Elliptic curves allow to define groups with a hard Discrete
Logarithm Problem. In the general case, cracking methods are far
less efficient than for RSA.

How? (simplified)

Let p > 3 a big prime, E (Fp) is the (short Weierstrass) elliptic
curve

E (Fp) : y
2 = x3 + ax + b,

where x , y , a, b ∈ Fp with 4a3 + 27b2 6= 0.
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ECC

EC Group

The points (x , y) on the curve define an abelian group together
with the point at infinity 0∞, the neutral element for addition.

Jacobian coordinates

The triple (x : y : z) can be mapped to (x/z2, y/z3) if z 6= 0. If
z = 0 it is 0∞. The curve becomes: y2 = x3 + axz4 + bz6.
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ECC

Operations in Jacobian coordinates (a = 0, points 6= 0∞)

Doubling (7S+5M+13A)

T (XT : YT : ZT ) = 2 · Q(XQ : YQ : ZQ).
XT = 9X 4

Q − 8XQY
2
Q ,

YT = 3X 2
Q(4XQYQ − XT )− 8Y 4

Q ,
ZT = 2YQZQ .

Addition (4S + 14M + 6A)

R = T + Q.
XR = (2YQZ

3
T − 2YT )

2 − 4(XQZ
2
T − XT )

3 − 8(XQZ
2
T − XT )

2XT ,
YR =
(2YQZ

3
T − 2YT )(4XT (XQZ

2
T − XT )− XR)− 8YT (XQZ

2
T − XT )

3,
ZR = 2ZT (XQZ

2
T − XT ).
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Montgomery Modular Multiplication

Montgomery Modular Multiplication (MMM)

MMM
MMM provides an efficient way for modular multiplication mod p
(noted ·): there is no division by p.

Residue
Let a, b,R ∈ Fp where R is Montgomery’s residue.
a′ = aR mod p is said to be a in Montgomery’s form.
a · b = abR−1 mod p, as a consequence
a′ · b′ = aRbRR−1 mod p = abR mod p = (ab)′.

Conversion
Field values are converted in Montgomery’s form at the beginning
of the computation and back to normal at the end.
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Montgomery Modular Multiplication

How to compute MMM?

Koç’s multiword CIOS algorithm
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Montgomery Modular Multiplication

CIOS details
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Montgomery Modular Multiplication

Benefits

Low memory footprint,
apart from some precomputations (p′,R ...), easy to change p
and operand sizes,
neat structure, without divisions, easy to implement in
hardware.
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Basics

Here, each operation takes 1 unit of time.
Let’s compute r = a · b + b + c .

Sequential

Time · + Operations
1 x t1 = a · b
2 x t2 = b + c
3 x r = t1+ t2

Parallel

Time · + Operations
1 x x t1 = a · b, t2 = b + c
2 x r = t1+ t2
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Basics

Basics - 2

Here, each operation takes 1 unit of time.
Let’s compute r = a · b + b + c .

Atomic

Latency Throughput · + Operations
2 0.5 1 2 r = a · b + b + c

Pipelined

Latency Throughput · + Operations
2+ ε 0.5 1 1 1 : t1 = a · b, t2 = b + c, 2 : r = t1 + t2

2+ ε 1 1 2 1 : t1 = a · b, t2 = b + c, 2 : r = t1 + t2

The choice of operations and how they are chained together is
called scheduling.
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Basics

Systolic arrays

A systolic array is an architecture both parallel and pipelined.
To create such an architecture, we have to identify small
Processing Elements (PEs) (no control flow logic).
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PEs

Where is Waldo the PE?
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PEs

α
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PEs

αf
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PEs

β
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PEs

γ
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PEs

γf
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Scheduling

S=8, Time=1
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Scheduling

S=8, Time=2
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Scheduling

S=8, Time=3
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Scheduling

S=8, Time=4
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Scheduling

S=8, Time=10
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Scheduling

S=8, Time=10
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Scheduling

S=8, Time=13
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Scheduling

S=8, All

Efficient MMM for ECC Mrabet et al. September 2016 27/37



Arithmetic Our architecture Results

Resources

Alpha
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Resources

Gamma
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Resources

Resources

Our architecture requires:
3 α,
3 γ,
1 β,
1 αf ,
1 γf .
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Resources

Regrouping
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Resources

Block diagram

Efficient MMM for ECC Mrabet et al. September 2016 32/37



Arithmetic Our architecture Results

Results

MMM architecture variants

CIOS (bits per word) s=8 s=16 s=32 s=64

K=256 32 16 8 4

K=512 64 32 16 8

K=1024 128 64 32 16

K=2048 256 128 64 32

Clock cycles= 3× (s + nb) 33 66 132 264

Number of cells 6 +3 12 +3 24 +3 48 +3
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Results

ECC results (Artix-7)

Slice DSPs BRAM Freq Slice FF Slice LUT

NW-8 (256) 3745 33 12 98 8281 9722

NW-16 (256) 3770 34 12 130 8313 9255

NW-8 (512) 7066 92 23 59 16500 20394

NW-16 (512) 7116 60 23 74 16501 19199
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Conclusion

Conclusion

Very efficient Montgomery Modular Multiplication with low
latency.
Give mixed results for a straightforward ECC implementation.
Yet improvements are still possible: we should not wait the
complete ending of an MMM to start the next.
Should be particularly interesting for latency and throughput.
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Conclusion

Thank you!

Any questions?
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Conclusion

ECC results

... et al. Curve Device Lut Reg Size (DSP) Freq.
Bajard 2014 256 any Kintex-7 4250 3532 1630 slices (46) 281
Bajard 2014 521 any Kintex-7 7067 5882 2565 slices (91) 266
Bajard classic 256 any – 7482 4605 – slices (46) –
Guillermin 256 any Stratix-2 – – 9177 ALM (96) 157
Guillermin 512 any Stratix-2 – – 17017 ALM (244) 145
Güneysu 256 NIST Virtex-4 – – 1715 slices (32) 490
Yuan Ma 256 any Virtex-4 5740 4876 4655 slices (37) 250
Yuan Ma 256 any Virtex-5 4177 4792 1725 slices (37) 291
McIvor 256 any Virtex-II – – 15755 slice 39
Us NW-8 256 any Artix-7 9722 8281 3745 slices (33) 98
Us NW-8 512 any Artix-7 20394 16500 7066 slices (92) 59
Us NW-16 256 any Artix-7 9255 8313 3770 slices (34) 130
Us NW-16 512 any Artix-7 19199 16501 7116 slices (60) 74
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