P<mark>hysical attack</mark>s 000 SCA against Verify PIN

Countermeasure

Conclusion

IoT and Physical Attacks

Hélène Le Bouder, Ronan Lashermes, Jean-Louis Lanet Thierno Barry, Damien Courroussé.

PÔLE D'EXCELLENCE

Introc	luction
	luction

SCA against Verify PIN

Countermeasures

Conclusion

Security in IOT

Internet of things

Natural idea to improve security

- Add cryptography for data.
- 2 Authentify user with a PIN code.

SCA against Verify PIN 0000000000

Countermeasures

Conclusion

Physical Attacks

- A cipher or PIN code Verification algorithm is securely designed against theoretical attacks (ex : classic cryptanalysis).
- The implementation of an algorithm on a device, introduces new security vulnerabilities.
- Physical attacks \neq classic cryptanalysis and logical attacks.
- Physical attacks can be divided in two families.

2 Physical attacks

- Side channel Analysis
- Fault Injection Attacks

SCA against Verify PIN

- Personal Identification Number (PIN) codes.
- Attack
- Profiling phase
- Attack phase
- Results
- 4 Countermeasures

- 2 Physical attacks
 - Side channel Analysis
 - Fault Injection Attacks
- 3 SCA against Verify PIN
 - Personal Identification Number (PIN) codes.
 - Attack
 - Profiling phase
 - Attack phase
 - Results
- 4 Countermeasures
- 5 Conclusion

	Physical attacks ●○○	SCA against Verify PIN	Countermeasures	Conclusion
Side channel Anal	ysis			

The side channel analysis consist in observing some physical characteristics which are modified during the computation performed on the circuit. Most classic leakages are: timing, power consumption, electromagnetic emissions (EM)

Figure: EMA, the side channel platform of the LHS

	Physical attacks ○●○	SCA against Verify PIN 0000000000	Countermeasures	Conclusion
Side channel Analy	rsis			

- Side Channel Attacks on block ciphers: physical values of a device leak information about intermediate state of the cipher.
- Typical SCA links texts and measurements.
- Restricted on the first or last round.

	Physical attacks ○○●	SCA against Verify PIN	Countermeasures	Conclusion
Fault Injection Att	acks			

The fault injection attacks consist in disrupting the circuit behavior. Disruption means: timing, power consumption, electromagnetic pulses, laser.

Figure: Faustine, the fault injection platform of the LHS

SCA against Verify PIN

Countermeasure

Conclusion

Introduction

Physical attacks

- Side channel Analysis
- Fault Injection Attacks

SCA against Verify PIN

- Personal Identification Number (PIN) codes.
- Attack
- Profiling phase
- Attack phase
- Results

4 Countermeasures

5 Conclusion

Physical attacks

SCA against Verify PIN

Countermeasure

Conclusion

Personal Identification Number (PIN) codes.

- Used to authenticate the user,
- mostly in payment cards or SIM cards...
- Targets of choice for malicious adversaries.
- A limited number of trials.

Physical attacks

SCA against Verify PIN

Countermeasures

Conclusion

Personal Identification Number (PIN) codes.

Verify PIN algorithm

1: p	procedure VERIFY PIN(candidate PIN V)
2:	counter = counter - 1
3:	if counter > 0 then
4:	status = $COMPARISON(U, V)$
5:	$status_2 = COMPARISON(U, V)$
6:	if status \neq status ₂ then
7:	ERROR, device is blocked
8:	else
9:	if status = TRUE then
10:	counter initialized at original value.
11:	end if
12:	end if
13:	else
14:	device is blocked
15:	end if
16:	return status
17: e	and procedure

- PIN code is an array of m digits.
- True PIN: U,
- Candidate PIN: V,
- $U \in \llbracket 0,9 \rrbracket^m$.
- 10^m different PIN codes.
- Countermeasure against fault attack: compare *U* and *V* twice.

Physical attacks

SCA against Verify PIN

Countermeasures

Conclusion

Personal Identification Number (PIN) codes.

Comparison of two PIN codes

- 1: **procedure** COMPARISON(candidate PIN V, true PIN U)
- 2: status = FALSE
- 3: diff = FALSE
- 4: fake = FALSE
- 5: **for** b = 0 to *m* **do**
- 6: **if** $U_b \neq V_b$ then
- 7: diff = TRUE
- 8: else
- 9: fake = TRUE
 10: end if
- 11: **if** (b = m) and (diff = FALSE) **then**
 - status = TRUE
- 13: else

12:

- 14: fake = TRUE
- 15: end if
- 16: end for
- 17: return status
- 18: end procedure

Countermeasure against timing attack:

comparison between U and V has to be in a constant time.

hysical attacks

SCA against Verify PIN

Countermeasure

Conclusion

Attack

A template attack

The main difficulty of the attack is to succeed with very few traces.

hysical attacks

SCA against Verify PIN

Countermeasures

Conclusion

Attack

A template attack

The main difficulty of the attack is to succeed with very few traces.

The attacker can :

- obtain one trace on the targeted device;
- change the True PIN in her profiling device;
- obtain many traces on her profiling device.

	Physical attacks	SCA against Verify PIN	Countermeasures	Conclusion
		000000000		
Profiling phase				

Physical attacks

- Side channel Analysis
- Fault Injection Attacks

SCA against Verify PIN

- Personal Identification Number (PIN) codes.
- Attack

Profiling phase

- Attack phase
- Results
- 4 Countermeasures

5 Conclusion

Intr	a	1 CT	on on
	oui	ucu	

SCA against Verify PIN

Countermeasures

Conclusion

Profiling phase

On the profiling device

Step 1: Campaign on the profiling device

- Campaign is for one given digit b.
- The digit U_b of the True PIN takes all values k in [[0,9]] and the other digits stay to zero.
- Digits of Candidate PIN V are fixed to a chosen value v.
- For each (k, v) collect many traces: $M_{v,k} = \{xk_{(i,j)}\}$, *i* for trace, *j* for time.

Introduction				
	ntro	A CHINE	21101	
nuouucuon	THURC	uut		

P<mark>hysical attacks</mark> 000 SCA against Verify PIN

Countermeasures

Conclusion

Profiling phase

On the profiling device

Step 1: Campaign on the profiling device

- Campaign is for one given digit b.
- The digit U_b of the True PIN takes all values k in [[0,9]] and the other digits stay to zero.
- Digits of Candidate PIN V are fixed to a chosen value v.
- For each (k, v) collect many traces: $M_{v,k} = \{xk_{(i,j)}\}$, *i* for trace, *j* for time.

Step 2: Detection of points of interest.

Select the moment of computation of Comparison (relevant j).

Introduction				
	ntro	A CHINE	21101	
nuouucuon	THURC	uut		

P<mark>hysical attacks</mark> 000 SCA against Verify PIN

Countermeasures

Conclusion

Profiling phase

On the profiling device

Step 1: Campaign on the profiling device

- Campaign is for one given digit b.
- The digit U_b of the True PIN takes all values k in [[0,9]] and the other digits stay to zero.
- Digits of Candidate PIN V are fixed to a chosen value v.

• For each (k, v) collect many traces: $M_{v,k} = \{xk_{(i,j)}\}$, *i* for trace, *j* for time.

Step 2: Detection of points of interest.

Select the moment of computation of Comparison (relevant j).

Step 3: Build of templates.

• Compute the covariance matrix $S_{\nu,k} = \{sk_{(j,j')}\},\$ $sk_{(j,j')} = \frac{1}{n-1} \cdot (xk_j - \overline{xk_j})^t (xk_{j'} - \overline{xk_{j'}})$

	Physical attacks 000	SCA against Verify PIN	Countermeasures	Conclusion
Attack phase				

Physical attacks

- Side channel Analysis
- Fault Injection Attacks

SCA against Verify PIN

- Personal Identification Number (PIN) codes.
- Attack
- Profiling phase

Attack phase

- Results
- 4 Countermeasures

5 Conclusion

Intr	00		± 10	
	ou	uc	LIU	

SCA against Verify PIN

Countermeasures

Conclusion

Attack phase

On targeted device

Step 4: Campaign on the targeted device

- True PIN digit U_b is **unknown**, it is the target;
- Candidate PIN digit V_b is equal to v.
- Trace is a vector $T_v = \{x_j\}$.

Intr	00		± 10	
	ou	uc	LIU	

SCA against Verify PIN

Countermeasures

Conclusion

Attack phase

On targeted device

Step 4: Campaign on the targeted device

- True PIN digit U_b is **unknown**, it is the target;
- Candidate PIN digit V_b is equal to v.
- Trace is a vector $T_v = \{x_j\}$.

Step 5: Confrontation between measurements

• Confront the trace T_v to the template matrix $S_{v,k}$.

• General formula in template attack:

$$F_{\nu}\left(T_{\nu}|S_{\nu,k}, \overline{xk}\right) = \frac{1}{\sqrt{2\pi^{p} \cdot |S_{\nu,k}|}} \cdot \exp\left(-\frac{1}{2} \cdot \left(T_{\nu} - \overline{xk}\right) \cdot S_{\nu,k}^{-1} \cdot \left(T_{\nu} - \overline{xk}\right)^{t}\right).$$

Intr	ad	1101		
	ou	uc	LIU.	

P<mark>hysical attacks</mark> 000 SCA against Verify PIN

Countermeasures

Conclusion

Attack phase

On targeted device

Step 4: Campaign on the targeted device

- True PIN digit U_b is **unknown**, it is the target;
- Candidate PIN digit V_b is equal to v.
- Trace is a vector $T_v = \{x_j\}$.

Step 5: Confrontation between measurements

- Confront the trace T_v to the template matrix $S_{v,k}$.
- General formula in template attack: $F_{\nu}\left(T_{\nu}|S_{\nu,k}, \overline{xk}\right) = \frac{1}{\sqrt{2\pi^{p} \cdot |S_{\nu,k}|}} \cdot \exp\left(-\frac{1}{2} \cdot \left(T_{\nu} - \overline{xk}\right) \cdot S_{\nu,k}^{-1} \cdot \left(T_{\nu} - \overline{xk}\right)^{t}\right).$

Step 6: Discriminating guesses

- Return the guess k_v for which F_v is maximal for a given T_v .
- Rank the guesses k according to the value of $F_v(T_v, k)$.

	Physical attacks 000	SCA against Verify PIN ○○○○○○○●○○	Countermeasures	Conclusio
Results				

- The True digit PIN: $U_b = 0$
- The Candidate digit PIN: $V_b = 0$
- The returned guess is clearly: k = 0
- If $U_b = V_b$. The attack always succeeds.

Intr	$\sim a$	1101	
	uu		

SCA against Verify PIN

Countermeasure

Conclusion

Results

- The True PIN digit: $U_b = 3$.
- The Candidate PIN digit: $V_b = 0.$
- The returned guess is k = 3.
- $U_b \neq V_b$: The attack succeeds, not so clearly.

IoT and Physical Attacks

ntrodı	u <mark>ction P</mark> 0		SCA ag	ainst Veri 0000●	ify PIN	Co			Con		
Results	5										
Suc	cess rate	e									
	numb	per of traces:	1	2	3	4	5	6	7	8	
	m - 100000	1 COMPARAISON	27.70	41.47	53.84	63.99	73.07	81.33	88.51	100	
n = 100000	2 COMPARAISON	31.71	46.56	57.82	67.76	76.63	84.36	90.68	100		
	n = 200000	1 COMPARAISON	29.28	44.27	56.79	67.41	76.66	83.91	90.68	100	
		2 COMPARAISON	32.72	49.52	61.96	72.05	80.49	87.53	93.23	100	
	n = 400000	1 COMPARAISON	29.56	44.11	56.0	66.88	75.96	84.04	90.58	100	
	$\cdot \cdot \cdot = - \cdot $					-	-				

• Success rate to retrieve a digit of a True PIN U_b according to the size *n* of the templates and the number and the choice of traces.

71.68

80.07

86.91

92.94

100

60.88

- Attack on an STM32 microcontroller with a low cost EM analysis platform.
- Worst case: in 8 trials, the PIN code is retrieved.

2 COMPARAISON 32.91 48.38

2 Physical attacks

- Side channel Analysis
- Fault Injection Attacks

SCA against Verify PIN

- Personal Identification Number (PIN) codes.
- Attack
- Profiling phase
- Attack phase
- Results
- 4 Countermeasures

SCA against Verify PIN 0000000000

Countermeasures

Conclusion

How to protect your design?

Generic countermeasures

- Masking against side channels,
- redundancy (ip replication, error detecting codes, ...) against fault attacks,
- Θ...

Specific countermeasures (for PIN codes)

- Device specific secret key K,
- store $S = HMAC_{\kappa}(U)$ on chip instead of PIN code U.
- To test candidate V, compare S with $HMAC_{K}(V)$ on chip.

SCA against Verify PIN 0000000000

Countermeasures

Conclusion

Security hygiene

Basic principles that designers must follow:

- No security through obscurity,
- if a device is compromised, the whole system must not be (no global secret on all devices),
- secrets should not be handled by the device if possible (reduce physical attacks exposure),
- impose first access security configuration (no default login/password).

Physical attacks 000	SCA against Verify PIN	Countermeasures	Conclusi

Cogito

- Introduce randomization with runtime code generation to produce polymorphic application components.
- Use semantic equivalences at the instruction level to produce different instances of code sequences.
- Shuffle, at runtime, the machine instructions and randomize the mapping to physical registers.
- Combine with hardware protections.
- With limited memory consumption and fast code generation, so that it is applicable in very small computing units such as secure elements.

Physical attacks	SCA against Verify PIN	Countermeasures

Physical attacks

- Side channel Analysis
- Fault Injection Attacks

3 SCA against Verify PIN

- Personal Identification Number (PIN) codes.
- Attack
- Profiling phase
- Attack phase
- Results

4 Countermeasures

5 Conclusion

Conclusion

- Adding security is not a trivial thing.
- Cryptography and PIN code may be vulnerable to physical attacks.
- Trade-off must be made between resource use and security.
- Dedicated chips embedding security features is a must-have for IoT devices to be truly considered secure.
- Software solutions are also possible in some cases.

Physical attack

SCA against Verify PIN

Countermeasure

Conclusion

Thank you for your attention !

Do you have any questions?

