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Abstract—Differential fault analysis (DFA) techniques have
been widely studied during the past decade. To our best
knowledge, most DFA techniques on the Advanced Encryption
Standard (AES) either impose strong constraints on the fault
injection process or require numerous faults in order to recover
the secret key. This article presents a simple methodology based
on information theory which allows to adapt the number of
required faults for the analysis to the fault injection process.
With this technique, the constraints on the fault model to re-
cover the last round key are considerably lowered. Additionally,
entropy is proposed as a tool to apprehend the most complex
fault models in DFA. A practical realization and simulations
are presented to illustrate our methodology.

Keywords-Differential fault analysis; Shannon entropy; er-
ror distribution; Advanced Encryption Standard; information
theory.

I. INTRODUCTION

Differential fault analysis against secret key algorithms
like the Advanced Encryption Standard (AES) has become
a major concern linked to the implementation of such algo-
rithms. This concern mainly originates from the complexity
linked to fault attacks on the Integrated Circuits (ICs) used
to run/implement cryptographic algorithms. The multiple
aspects of this complexity are: the fault injection means
used and their associated parameters; the analogue nature
of the ICs under analysis and the effect induced by the
different fault injection means on these ICs; the targeted
cryptographic algorithm and the associated cryptanalysis
methods. This complexity has led to the proposal of several
fault analysis methods based on practical and/or theoretical
fault models.

In this paper, we propose a generic methodology for
performing differential fault analysis based on the entropy of
the errors that are generated in an IC. We provide an example
of its implementation against the AES. We demonstrate that,
based on only three hypotheses on the kind of injected errors,
the tenth round key of an AES encryption can be rapidly
found. We first provide a short review of physical attack
techniques. Then a quick overview of the AES algorithm and
the practical attack set-up used are given. We next present
the main ideas and motivations behind our approach before

actually describing the proposed method. We then cover the
issues linked to the practical implementation of our analysis
methodology before proposing some enhancements. We also
provide a discussion on the relevance of the error distribution
model used, especially in the presence of countermeasures.

II. PHYSICAL ATTACKS

“Physical attacks” target the ICs running the crypto-
graphic algorithms as opposed to cryptanalytic or mathe-
matical techniques which search for vulnerabilities in the
cryptographic algorithm itself. There are three main kinds of
“physical attacks” on cryptographic devices. The first type,
called “invasive attacks”, covers all the techniques based
on the analysis or modification of an IC’s design by an
invasive method such as micro-probing or the use of Focused
Ion Beams. The second kind, called “side channel analysis”
(SCA), exploits the fact that some physical values or “side
channels” like the power consumption, the electromagnetic
radiation or the duration of computation of an IC depend
on its internal computations [1]–[3]. This threat can not be
underestimated since these analyses can be quickly mounted
with cheap equipment, without altering the physical integrity
of the circuit. This dependency between the “side channels”
and the internal computations can be analysed using math-
ematical tools like correlation [4], mutual information [5],
variance [6] or entropy [7]. The third kind of attacks, called
“fault analysis”, consists in disturbing the circuit’s behaviour
in order to alter the correct progress of the algorithm. The
faults are injected into the device by various means such
as laser, clock glitches, spikes on the voltage supply or
electromagnetic perturbations. There are three categories of
fault attacks:
• “Algorithm modifications” consist either in reducing the

ciphering complexity of the cryptographic algorithm [8]
or in bypassing hardware or software protections.

• “Differential Fault Attack” (DFA), originally described
in [9], [10], consists in retrieving the key by comparing
the correct ciphertexts with faulty ones. A detailed
comparison of DFA schemes against AES, for example,
is given in [11]. They are usually distinguished by
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the constraints on the fault models (timing and value
of the faults, etc.) and the algorithmic complexity of
the analysis. Most of those schemes are based on the
hypothesis that the fault randomly modifies one byte
[12]–[15] but a minority of DFA schemes consider on
the contrary that the fault on the byte is not random
[16], [17]. In [18] the notion of key recovery based
on error distributions was firstly introduced. However
our approach is different in various aspects: crypto-
algorithm targeted, distinguishers used and we focus
on the practical use of the analysis.

• “Safe-error” attacks consider fault models with near
constant errors [19]–[21]. The attacker does not nec-
essarily need the pair of correct and faulty ciphertexts
but only the information about the behaviour of the chip
(for example about the start of an alarm, the rising time
of the alarm or a premature stop in computation) by a
simple analysis of power consumption for example.

III. CLOCK GLITCH ATTACK ON AES
To validate the DFA’s methodology proposed in section

IV, practical fault injections were done on a hardware AES
using clock glitches as the injection means.

A. AES presentation
The AES is a standard established by the NIST [22]

for symmetric key cryptography. AES encryption is based
on a few transformations (i.e. SubBytes, ShiftRows, Mix-
Columns, AddRoundKey) used iteratively in “rounds”
(Fig. 1). In this paper, we focus on the 128-bit key version
of the AES. This version processes data blocks of 128 bits in
ten rounds (after round 0). The round keys (K1 to K10) used
during every round are calculated by a key expansion routine
(not detailed in this paper). A data block is represented as
a matrix of 4 × 4 bytes called the “State”. We denote M1
to M10 the AES States at the end of each round.

B. Clock glitch attacks on AES
In order to validate the assumptions made in this pa-

per, experiments have been conducted to gather practical
data. A clock glitch generator similar to the one presented
in [23] and [24] has been used to inject faults into the cal-
culations of an unprotected AES implemented on a FPGA.
Faults were induced by the violation of the timing constraints
related to the clock period of an IC. This phenomenon is
analysed in [25].

Shown on Fig. 2, the architecture used completes an AES
round in one clock cycle. It features a long datapath from the
output of the register to its input. For every bit in the cipher
block, the propagation delay varies depending on the data
processed. Thus the critical path may change at each clock
cycle. For different encryptions with the same plaintext and
key, we reduce progressively the clock period during the 9th

round by steps of 25 ps until it becomes too short to comply
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Figure 2. Hardware implementation used.

with the timing constraints. Hence, the value of M9 stored
in the register is corrupted. This may be modelled with a
bit-flip as shown in Fig.4. As a consequence, a progressive
increase of the stress applied (i.e. the decrease, step by step,
of the clock period) induces successively: (1) a first single
bit fault located at the bit with the highest propagation delay
(≈ 90% success rate); (2) a second and a third (≈ 70% and
≈ 50% success rates respectively) fault appears; (3) more
faults are induced at higher stress level. This provides the
ability to tune the probabilities of occurrence of the injected
faults. Since the propagation delays are data dependent, any
change of the plaintext and/or of the key leads to a change
in these propagation delays. As a consequence, the obtained
faults for encryptions with different plaintexts but with the
same stress are different in their location and number. The
advantages hence provided by this attack scheme are: a
fast fault injection technique (≈ 100 faults per second);
a good temporal resolution (100% faults are on M9); the
possibility to tune the generated errors’ distribution. Fig. 3
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shows the example of a distribution of errors generated by
the clock glitch attack with approximately 5,000,000 faults
for 100,000 different plaintexts. In the figure, peaks match
low Hamming weight errors (mainly single and double bits
errors).
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Figure 3. Distribution of injected errors using the clock glitch set-up

In the following, this distribution serves as an example to
our methodology. However, one shall consider that the error
distribution is unknow a priori.

IV. PROPOSED METHODOLOGY

Our position of the problem is as follows: given the
AES, given a fault injection means with a “characteristic”
error distribution, by analysing a set of ciphertexts and their
corresponding faulty ciphertexts we want to find a best
candidate for the key (or round key) with some level of “con-
fidence”. Compared with existing DFA, our approach does
not necessarily require fewer realizations. Yet by loosening
the constraints on the fault model, analyses are more easily
done in practice. We shall have three hypotheses below:
• Hypothesis 1: The faults generated are bit-flips. They

can be modelled with an XOR operation with an error
vector e (see Fig. 4). Set and reset faults would not
work as efficiently as a bit-flip one in our scheme since
it requires the use of a virtual model (cf Section VII).

• Hypothesis 2: The injected errors are not uniformly
distributed (as shown for example on Fig.3). Supposing
this condition, there are absolutely no constraints on the
value of the injected error.

• Hypothesis 3: In the case of the AES, we shall suppose
that such errors are injected on M9 as shown in Fig. 4.

For a matter of simplicity, the ShiftRows operation has
been left out. Since there is no MixColumns operation
on the last round, our analysis can focus individually on
every byte of the State matrix.The generalisation to the
whole State is straight-forward, so variables always represent
bytes in the following. In practice all bytes can be faulted
simultaneously.

Let i be the index associated with every plaintext. Using
the same unknown key K , random plain texts Mi are

SB ARK

K10e

M9 C, D

Round 10Round 9

Figure 4. Attack scheme with fault injection on M9.

encrypted - with and without fault injection - to get the
corresponding correct ciphertexts Ci and faulty ciphertexts
Di. For every i, the resulting pair of correct and faulted
ciphertexts is here called a realization. For each encryption,
two equations describe the realization:

Ci = K10⊕ SB(M9i) (1)
Di = K10⊕ SB(M9i ⊕ ei) (2)

where K10 is the value of the 10th round key and ei is the
injected error. For each realization, as K10 is unknown, all
byte hypotheses s on the round key have to be tried. It is
then possible to compute the value ei,s such that:

M9i = SB−1(Ci ⊕ s) (3)
ei,s = M9i ⊕ SB−1(Di ⊕ s) (4)

For every s, an error value ei,s is obtained from every
realization i. Then, a Realization/Key hypothesis table (or
RK-table) is built (cf Table I).

Table I
REALIZATIONS / KEY HYPOTHESES (RK) TABLE

Key hypothesis s
Realization i 0 1 2 · · · 255

0 e0,0 e0,1 e0,2 · · · e0,255
1 e1,0 e1,1 e1,2 · · · e1,255
2 e2,0 e2,1 e2,2 · · · e2,255
· · · · · · · · · · · · · · · · · ·

The core of our methodology relies on the following prop-
erties (valid with our hypotheses):
• Property 1: Only one column in the RK-table corre-

sponds to the correct key byte (K10) and the values
ei,s in this column correspond to the errors that have
been actually injected.

• Property 2: Given the properties of the AES SubByte
operation, for every wrong key guess, the corresponding
set of ei,s is quasi-random.

A discussion about Property 2 is given in [11]. A condi-
tion for Property 2 states that errors are independent of M9.
In our experiment, we neglect the slight dependence between
errors and M9 and we consider that the SBox perfectly
randomizes errors in the case of a wrong key guess.

Based on those two properties, finding the correct key
guess comes down to distinguishing between the columns of
values ei,s that correspond to the wrong key guesses, which
exhibit a random distribution, and the “single” column of
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errors that corresponds to the correct key guess - it has a
non random, i.e. biased, distribution [18].

The “distinguisher” proposed here is the Shannon entropy
H(S) = H(ps) computed from a distribution ps constructed
from a vector S of size imax for one key hypothesis s given
by

H(ps) = −
255∑
e=0

ps(e) ∗ log2 ps(e) (5)

where ps(e) is the probability of occurrence of value e

(value between 0 and 255) for a given key hypothesis s.
For a uniform distribution of errors, with a large number of
realizations, the corresponding Shannon entropy shall tend
to 8; whereas for a biased distribution, the Shannon entropy
shall tend to Hinj < 8, the asymptotic entropy of the
injection means. For a detailed discussion about Shannon
Entropy and probability distributions, see Appendix A.

Applied to the RK-table, we calculate the Shannon en-
tropy corresponding to each column and we shall have the
following decision criterion:

lim
imax→∞

H(S) = 8⇐⇒ Wrong key guesses (6)

lim
imax→∞

H(S) = Hinj < 8⇐⇒ Correct key guess (7)

Note that in our approach, equation 7 holds because of
Hypothesis 2.

V. PRACTICAL IMPLEMENTATION ISSUES

In this section, we address two practical issues concerning
the methodology proposed in Section IV: how to define a
quantitative method (i.e. a decision criterion) to distinguish
between the two cases corresponding to equations 6 and 7;
and how to define the minimum value of imax for which
the decision criterion holds. We shall then illustrate the
implementation of our approach based on data collected
from the experimental set-up described in Section III-B.

A. Quantitative decision criterion for sorting out key
guesses

In practice, the number of realizations is limited, which
means that the Shannon entropy of a random distribution of
errors shall be strictly lower than 8. The decision criterion
is defined to take this limiting factor into account. We thus
have to study the entropy of a limited set of (error) bytes
generated by a pseudo-random generator and establish a
model. For a fixed number of realizations imax, the data
sets resulting from a pseudo-random data source do not all
have the same entropy. We represent this entropy distribution
which gives the probability of occurrence of each entropy
according to a Gaussian law. This allows to quantify the
level of confidence, for a fixed number of realizations, that
a value of entropy comes from a pseudo-random generator
or not.

As detailed in Appendix B, we precompute μrand
imax

, the
mean of a random distribution from a data set of size imax,
and σrand

imax

, the standard deviation of the same random data
set. We can then evaluate the confidence cf that an entropy
of value H is not random using equation 8.

cfimax
(H) =

μrand
imax

−H

σrand
imax

(8)

From there we define that, for a limited number of
realizations imax, a key is detected if its confidence is higher
than a 6-sigma confidence, i.e. K10 is the only value for key
hypothesis s that satisfies the equation 9.

cfimax
(H(pK10)) > 6 (9)

This 6-sigma value is the result of a trade-off between
confidence and analysis efficiency. A lower confidence
would make our analysis provide a key candidate sooner
but with a higher false-positive probability. 6-sigma allows
us to reach the same analysis efficiency as Giraud’s one in
Table II.

B. Discussion on the number of realizations imax

In order to quantify the influence of the number of
realizations on the calculated entropies associated to the
columns of the RK-table, we ran simulations using the
pseudo-random number generator of the Mono framework
(www.mono-project.com) on an Opteron 1222 PC processor
to generate 5000 data sets of every size ranging from 1 to
2999. From these sets, entropy distributions, mean values
and standard deviations have been calculated for every data
set size. In Fig. 5, the results of this simulation can be seen
with the mean and the lower 6-sigma deviation from the
mean. From the latter figure, we foresee that there must be a
minimum number of realizations needed for a given injection
entropy. For each possible entropy value (between 0 and
7.95), several random distributions of this given entropy
were generated. They were used to create data sets of various
sizes. With these sets we measured the average minimum
size such that the entropy of the data set is lower than the
6-sigma boundary of the random model. The result is shown
on Fig. 6. We have the average minimum data set size as a
function of the injection entropy. We show with this Figure
a direct link between the analysis efficiency and the entropy
of the injection means. Hence we provide a metric to assess
how efficient an injection means is to perform our attack.

In practice, in order to implement our entropy-based
differential fault analysis, an attacker has to progressively
increase the number of realizations while computing the
entropies until one entropy reaches the 6-sigma boundary.
This way, the attacker needs in average only the minimum
data set size shown on Fig. 6 to find the key.
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various entropies of the injection means.

C. Practical implementation using clock glitches on AES

Using the experiment presented in Section III-B, we used
faults created when progressively reducing the clock period
by 150 steps of 25 ps. We determined experimentally that
the entropy Hinj of our physical attack is Hinj ≈ 7.76.

On Fig. 7 are shown the entropies as a function of the key
hypothesis for a data set of size 506. With a similar method,
we created a data set of increasing size from 100 to 1000.
Fig. 8 illustrates all entropies for all key hypotheses. We can
see that with an injection process of entropy ≈ 7.76, 165
faults were needed in this particular example to find the key.

The presented analysis has interesting properties: no prior
fault model is necessary but a bit-flip model. In particular,
we do not need to know which faults are more likely to
occur but only that such faults exist. An injection process
with a high entropy can still allow to find the key. Moreover
this method also allows the attacker to learn about the error
distribution generated by the fault injection means. The main
drawback of our approach described so far is that a larger
amount of faults is needed to extract the key than existing
DFA. For example, in a single-bit fault injection, we would
need, on average, a minimum of 6.4 faults to find the correct
key against only 2.24 with Giraud’s DFA [16] (cf Table II).
In the next section, we shall discuss how to improve this.
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(with the K10 & the 6-sigma boundary).

VI. ENHANCEMENT: MODEL BASED APPROACH

In order to increase the efficiency of our approach, we
can use a predetermined model of the fault injection means
and compare it with the measured data sets for each key
hypothesis. The proposed model is based on the error
distribution. If no prior model is known, it is possible to use
the previously described attack using the Shannon entropy
to recover the key and to construct the model which can
in-turn be used in future differential analyses made on the
same device or on devices of the same family.

A. Comparing two error distributions

Let t be the probability distribution of a given model
which represents what the expected distribution should be.
Let ps be the measured error distribution for a given key
hypothesis s. In order to include information about what
fault is more or less probable than some other one, we shall
use the concept of Relative Entropy, noted RH (also called
Kullback-Leibler divergence), as defined by:

RH(ps, t) =

255∑
e=0

ps(e) log2

(
ps(e)

t(e)

)
(10)
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A condition on t(e) is that ∀e, t(e) �= 0 in order to
have the Relative Entropy properly defined. With respect
to Shannon entropy, the template function t(e) allows to
introduce a weighting coefficient among the probabilities.

B. Illustration

As an example, we simulated the case where the injection
means generate single-bit errors. We can then compare our
analyses with Giraud’s single-bit analysis [16] and the RLK
(Roche-Lomné -Khalfallah) fault analysis [17]. We slightly
modified the latter one to take into account a fault on
M9 rather than on K9 and K10. The RLK analysis is
particularly relevant as a comparison with our owns since
the underlying principle which makes it works (detection of
a non-random probability of error) is the same as in our
approach.

We simulated a perfectly single-bit fault injection source
in order to generate our faults. The template used for
the Relative Entropy (RH) analysis in Equation 10 has
been arbitrarily defined as follows: t(e) = 31

256
for e ∈

{1, 2, 4, 8, 16, 32, 64, 128}, for the other e values, t(e) =
1

7936
. This is an approximation of the probability distribution

where all single-bit faults have the same probability of
occurrence, but respecting the condition ∀e, t(e) �= 0. We
simulated 4 different analyses: Giraud’s, our’s based on
Shannon Entropy, our’s using the Relative Entropy, and the
RLK analysis. For all analyses but Giraud’s1, a 6-sigma
condition is used to detect the key. With this condition, we
found out the minimum number of faults necessary to detect
the key. The results are displayed in Table II.

Table II
MINIMUM (AV.) NUMBER OF FAULTS FOR A SINGLE-BIT FAULT

INJECTION.

Analysis name Average minimum amount
Giraud’s 2.24

Shannon entropy 6.41
Relative entropy 2.24

RLK’s 8.95

We then performed the same analyses (but Giraud’s) with
the same RH template (a single-bit one) on data collected
during the clock glitch attack described in Section III-B.
The results are shown in the Table III. Please note that, in
this experiment, the RLK analysis, similarly to the Shannon
entropy approach, does not include a priori information on
the fault injection process.

Table III
MINIMUM (AV.) NUMBER OF FAULTS FOR A CLOCK GLITCH FAULT

INJECTION.

Analysis name Average minimum amount
Shannon entropy 445
Relative entropy 359

RLK’s 137
1since it is not a statistical analysis.

It is interesting to note that the Relative Entropy, a statistical
distinguisher, is able to match Giraud’s performances on
extremely small data set (of size 2 or 3). The RLK is
extremely efficient with our clock glitch attack. This is due
to the highest peak present in the distribution (Fig. 3). If the
peak were lower, more texts would be necessary since the
performance of RLK mainly depends on the value of the
highest peak.

C. Constructing the relevant error distribution template
In order to generate a relevant fault model, one can,

as illustrated previously, build a theoretical one. A second
alternative is to build one based on our Shannon entropy ap-
proach. A third alternative would be to profile the behaviour
of the device under test while injecting faults during the
tenth AES round: for example by injecting faults after the
SubByte of round 10, the injected errors can be qualified
by comparing the correct ciphertexts with the erroneous
ones. This can work only at the condition that the injected
errors do not solely depends on the timing of the injection.
However this alternative has not been tested in practice.

VII. COUNTERMEASURES AND WRONGLY TIMED
INJECTIONS

Up to now, our discussion has been based on measure-
ments made on an unprotected AES using a fault injection
means that provided precise timing. In this section, we
discuss about how our approach can be extended when any
of those two conditions is not present. In this case a larger
number of realizations will be needed to extract the correct
key.

From now on, we shall suppose that the targeted IC
always gives a result for each encryption: when an error
is detected either a correct ciphertext (the error has been
corrected) or an erroneous one is returned. Moreover we
suppose that there is always a certain proportion, strictly
greater than zero, of errors passing through the protection
undetected. In order to use our approach, we shall define
a “virtual model” based on the fact that every fault on the
ciphertext can be associated with an error value injected on
M9. For example, suppose each time the countermeasure
detects a fault, the chip outputs a random ciphertext.Then
the difference between the random faulty ciphertext and the
correct one can be associated with an error on M9 using
equations 3 and 4.

A. Virtual model with result discrimination
Result discrimination is the ability for the attacker to

know if the countermeasure has detected the fault (or if
the injection was not correctly timed). If we have result
discrimination, the virtual model only includes modifications
due to the variations of the detection rate since we can filter
all detected faults. Indeed, let d(e) be the average detection
rate of the error of value e (0 ≤ d(e) ≤ 1) and pK10(e) the
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probability that error e is injected by our physical injection
means. We can define the virtual error distribution v as:

v(e) =
pK10(e)(1− d(e))∑

255

n=0
pK10(n)(1− d(n))

=
pK10(e)(1− d(e))

1−D
(11)

where D is the global error detection rate:

D =

255∑
n=0

pK10(n)d(n) (12)

The collected erroneous ciphertexts correspond to errors
which have not been detected, which means that we have
to take into account the fact that there are errors that have
been detected and filtered by the countermeasure. Hence
in practice, we need more faults in the presence of the
countermeasure ( 1

D
times).

If the distribution of the errors injected physically is
uniform but not their associated detection rates, the coun-
termeasure can allow a key recovery with the creation of
a non-uniform virtual error distribution. In practice, such a
situation can occur when we have countermeasures like one
proposed by Bertoni et al. in [26] where an error detection
code is used by adding one parity bit per byte of the State.
This protection is able to detect all errors of odd parity and
none of even parity. If we have result discrimination, such
a scheme artificially filters some errors and not others, thus
decreasing the entropy of the virtual model as shown in
Table IV. Hence, for countermeasures to be efficient against
our scheme, they should have uniform detection rates. Please
note that Bertoni’s countermeasure has been presented as
an illustration even if it does not constitute an efficient
protection against state-of-the-art DFA techniques.

B. Virtual model and random noise
If the attacker is not able to know if the countermeasure

has detected a fault or if a wrongly timed injection occurs
(e.g. before the SubByte in a round other than round 9) the
error can be modelled as a random error at round 9. This
is similar to a random noise added to the previous virtual
error distribution. In the presence of a countermeasure, the
new virtual error distribution w becomes:

w(e) =
1

256
D+pK10(e)(1−d(e)) =

1

256
D+(1−D)v(e)

(13)
This is what we call the virtual error distribution without
result discrimination, for which an example of error entropy
is given in Table IV. An example of the resulting entropy
values is shown on Table IV, with the corresponding distri-
bution in Appendix C. One should note the entropy decrease
when we have result discrimination.

The result discrimination feature can be achieved in
practice with different methods such as the probing of the
alarm signal, the measurement of characteristic data of the

Table IV
ENTROPIES OF GENERATED ERRORS USING CLOCK GLITCHES FOR

DIFFERENT AES IMPLEMENTATIONS WITH BERTONI’S SCHEME.

Entropy
Unprotected AES 7.76

Virtual injection with discrimination (v) 6.86
Virtual injection w/o discrimination (w) 7.78

error detection circuit, etc. It is highly unlikely that the
attacker can achieve total result discrimination in practice. In
this case, the new virtual model is obtained as a combination
of the two previous ones.

VIII. CONCLUSION

We presented a way to perform differential fault analysis
based on the study of the entropy of the injected errors
having a non uniform distribution. As an illustration, we
focused on faults injected on the intermediate state matrix
M9 of the AES. We used the Shannon entropy of the error
distribution as the distinguisher and the 6-sigma confidence
as the decision criterion. We also showed how to find the
minimum number of realizations needed to efficiently reach
such a decision. We further proposed a refinement based on
the knowledge of the model of the error distributions and
how this can be quantitatively achieved using the notion
of relative entropy. We finally discussed about how our
approach is still relevant even in the presence of some
countermeasures or in the presence of imprecisions on the
injection tools used. To our best knowledge, this is the first
DFA on AES which adapts its efficiency to the constraints
on the fault injection process based on error distributions. It
is no longer necessary to constraint faults to subsets such as
single-bit errors or constant errors.

This work can be extended in different directions: ap-
plying the same methodology when the fault occurs at
some other location in the AES algorithm, with other AES
implementations, with other injections means (optical, EM,
etc.). Finally the effects of existing masking schemes shall
be investigated.
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APPENDIX A.
SHANNON ENTROPY & ERROR DISTRIBUTION

Error distributions are used in order to extract information
from the columns of the RK-table. Creating an error distri-
bution from an error data set is very simple. If the function
expressing the distribution is ps (ps(e) is the probability of
occurrence of error value e for the key hypothesis s) and
the data set S is expressed as (ei,s)0≤i<imax

for a given
hypothesis s, we can define:
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ps(e) =
#{ei,s|ei,s = e, 0 ≤ i < imax}

imax

(14)

with e ranging between 0 and 255 (all possible errors for
one byte) and # denotes the cardinality of the set.

Shannon Entropy (denoted H) is used on the columns of
the RK-table as a signal characterization tool. When applied
on a byte distribution ps, the Shannon entropy is defined as:

H(ps) = −
255∑
e=0

ps(e) ∗ log2 ps(e) (15)

As a notation trick, for a data set S, we write H(S) the
Shannon entropy of the data set as the Shannon entropy
of the byte distribution constructed from this set. The
Shannon entropy represents the minimum average amount
of information bits per symbol.

APPENDIX B.
GAUSSIAN DISTRIBUTIONS

When using an injection source of pseudo-random errors,
the measured entropy of a data set of limited size imax is
strictly lower than 8. Moreover this entropy is not constant
when modifying the data set due statistical variations in the
random draw. As an example on Fig. 9 are shown the various
entropies measured for data sets of size imax = 1000 as well
as their probability of appearance.
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Figure 9. Distribution of the entropies for pseudo-random data sets of
size imax = 1000.

Because of the Gaussian shape of this distribution, it has
been decided to model entropy variations of a given data set
size with a Gaussian law. This law defines a mean μrand

imax

computed with the equation 16 on a set D of pseudo-random
data sets of the same size imax.

μrand
imax

=

∑
S∈DH(S)
#D (16)

The standard deviation is defined by equation 17.

σrand
imax

=

√∑
S∈D

(
H(S)− μrand

imax

)2
#D (17)

A classical result of Gaussian analysis is that the proportion
of values (if following a Gaussian law) in the range [μrand

imax

−
z ∗ σrand

imax

, μrand
imax

+ z ∗ σrand
imax

] is:

erf

(
z√
2

)
(18)

where erf is the so-called error function. We can hence
define a confidence that an entropy value is a result of a
random process. Indeed it is sufficient to compare the value
with the Gaussian distribution by determining the likelihood
that it belongs to that distribution. For example, a value at a
6-sigma distance from μrand

imax

has a very low probability to
be the result of a random process.

The confidence we have in the fact that a particular
entropy is not random can be directly expressed by this z

value.
Hence the confidence cf in any entropy H of data size imax

can be computed from H , μrand
imax

and σrand
imax

:

cfimax
(H) =

μrand
imax

−H

σrand
imax

(19)

In our case, for a given data set size, we have 255 random
entropies corresponding to the 255 wrong key guesses. For
each data size, random entropies are in average comprised
in the range [μrand

imax

− zrand ∗σrand
imax

, μrand
imax

+ zrand ∗σrand
imax

].
where zrand =

√
2erf−1

(
255

256

) ≈ 2.9. We need a criterion
to determine if a key hypothesis is correct or not, larger
than a 3-sigma confidence. We chose a 6-sigma one, but
one could chose another value, depending on the desired
level of confidence.

APPENDIX C.
ERROR DISTRIBUTIONS WITH BERTONI’S

COUNTERMEASURE

As an example of the effects of a countermeasure, we
show on Fig. 10 and 11 the resulting virtual distributions
respectively with and without result discrimination. In this
particular example, the global detection rate is D ≈ 0.52.
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Figure 10. Distribution of the virtual injection with result discrimination.
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Figure 11. Distribution of the virtual injection without result discrimina-
tion.
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