
High-performance Elliptic Curve Cryptography by Using
the CIOS Method for Modular Multiplication

Amine MRABET1,3,5, Nadia EL-MRABET2, Ronan LASHERMES7, Jean-Baptiste
RIGAUD2, Belgacem BOUALLEGUE6, Sihem MESNAGER1,4 and Mohsen

MACHHOUT3

1University of Paris XIII, CNRS, UMR 7539 LAGA - France
2Ecole des Mines de St-Etienne, SAS-CMP - France

3University of Monastir EµE Lab - Tunisia
4 Télécom ParisTech

5National Engineering School of Tunis - Tunisia
6King Khalid University - Saudi Arabia

7LHS-PEC TAMIS INRIA-Rennes - France

Abstract Elliptic Curve Cryptography (ECC) is becoming unavoidable, and should be
used for public key protocols. It has gained increasing acceptance in practice due to the
significantly smaller bit size of the operands compared to RSA for the same security level.
Most protocols based on ECC imply the computation of a scalar multiplication. ECC can
be performed in affine, projective, Jacobian or others models of coordinates. The arithmetic
in a finite field constitutes the core of ECC Public Key Cryptography. This paper discusses
an efficient hardware implementation of scalar multiplication in Jacobian coordinates by
using the Coarsely Integrated Operand Scanning method (CIOS) of Montgomery Modular
Multiplication (MMM) combined with an effective systolic architecture designed with a
two-dimensional array of Processing Elements (PE). As far as we know this is the first
implementation of such a design for large prime fields. The proposed architectures are
designed for Field Programmable Gate Array (FPGA) platforms. The objective is to reduce
the number of clock cycles of the modular multiplication, which implies a good performance
for ECC. The presented implementation results focuses on various security levels useful
for cryptography. This architecture have been designed in order to use the flexible DSP48
on Xilinx FPGAs. Our architecture for MMM is scalable and depends only on the number
and size of words.

Keywords: Hardware Implementation, ECC, Modular Multiplication, Montgomery Al-
gorithm, CIOS method, Systolic Architecture, DSP48, FPGA

1 Introduction

The search for the most optimised architecture for arithmetic has always fascinated
the embedded system world. In recent years this has been especially the case in finite
fields for cyber security due to the invention of asymmetric encryption systems based
on modular arithmetic operations. Throughout the history of cryptography for embed-
ded systems, there has been a need for efficient architectures for these operations. The
implementations must be cost-effective, both in terms of area and latency. Finite field
arithmetic is the most important primitive of ECC, pairing and RSA. Since 1976, many



2 Authors Suppressed Due to Excessive Length

Public Key Cryptosystems (PKC) have been proposed and all these cryptosystems base
their security on the difficulty of some mathematical problem. The hardness of this un-
derlying mathematical problem is essential for security. Elliptic Curve Cryptosystems
which were proposed by Koblitz [9] and Miller [15], RSA [21] and the Pairing-Based
Cryptography[8] are examples of PKCs. All these systems require an efficient finite field
multiplication. As a consequence, the development of efficient architecture for modular
multiplication has been a very popular subject of research. In 1985, Montgomery has
presented a new method for modular multiplication [17]. It’s one of the most suitable
algorithm for performing modular multiplications in hardware and software implementa-
tions. The efficient implementation of the Montgomery Modular Multiplication (MMM)
in hardware was considered by many authors [3,6,7,18,19,23]. There is a variety of ways
to perform the MMM, considering if multiplication and reduction are separated or in-
tegrated. A systolic array architecture [12,24] is one possibility for the implementation
of the Montgomery algorithm in hardware, with a design both parallel and pipelined
[3,18,19,20,23]. A similar work [20] has been done for binary fields (field characteristic
is a power of 2) without having to deal with carry propagation as a consequence. These
architectures use a Processing Elements (PE) array where each Processing Element per-
forms arithmetic additions and multiplications. In accordance with the number of words
used, the architecture can employ a variable number of PEs. The systolic architecture
uses very simple Processing Elements (as in a pipeline). As a consequence, the systolic
architecture decreases the needs for logic elements in hardware implementations. Our
contribution is to combine a systolic architecture, which is assumed to be the best choice
for hardware implementations, with the CIOS method of Montgomery modular multipli-
cation. We optimize the number of clock cycles required to compute a n-bit MMM and
we reduce the utilization of FPGA resources. We have implemented the modular multi-
plication in a fixed number of clock cycles. To the best of our knowledge, this is the first
time that a hardware or a software multiplier of modular Montgomery multiplication,
suitable for various security level, is performed in just 33 clock cycles. Furthermore, as
far as we know, our work is the first one dealing with systolic architecture and CIOS
method over large prime characteristic finite fields. Using our efficient MMM hardware
implementation, we propose an efficient design for ECC operations: point addition and
doubling. This paper is organized as follows: Section 2 discusses related state-of-the-art
works. Section 3 presents the CIOS method of Montgomery Modular Multiplication algo-
rithm. The proposed architectures and results are presented in Section 4 and Section 5.
Finally, the conclusion is drawn in Section 6.

2 State of the art

2.1 Elliptic Curve Cryptography

The use of elliptic curves in cryptography has been independently introduced by Victor S.
Miller [16] and N. Koblitz [10] during the 80s. The main advantage of ECC is that the bit
sizes of the key are reduced for the same security level when comparing with a classical
RSA algorithm [22]. For instance, at the AES 128-bit security level the key for ECC is



Title Suppressed Due to Excessive Length 3

256 bits, while RSA requires a 3072-bit key. The main operation in ECC is the scalar
multiplication over the elliptic curve. This scalar multiplication consists in computing
α × P , for α an integer and P a point of an elliptic curve. When such an operation
is implemented on an embedded system such as a FPGA, it is subject to constraints
of area and speed. Efficient scalar multiplication arithmetic is hence a central issue for
cryptography. The interested reader is referred to [2] for a good overview of the question.

ECC preliminaries Let E be an elliptic curve defined over Fp with p > 3 according to
the following short Weierstrass equation:

E : y2 = x3 + ax+ b (1)

where a, b ∈ Fp such that 4a3 + 27b2 6= 0. The elliptic curve E(Fp) is the set of points
(x, y) ∈ F2

p whose coordinates satisfy Equation 1. The rational points of E, augmented
with a neutral element O called point at infinity, have an abelian group structure. The
associated addition law computes the sum of two points in affine coordinates P = (x1, y1)
and Q = (x2, y2) as P +Q = (x3, y3) where: x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1
with

λ =


y2 − y1
x2 − x1

if P 6= Q,

3x21 + a

2y1
if P = Q.

(2)

The scalar multiplication of a point P by a natural integer α is denoted αP . The discrete
logarithm problem is finding the value of α, given P and αP . The security of ECC is
based on the hardness of the discrete logarithm problem. Point addition formulae such
as in Equation 2 are based on several operations over Fp (e.g. multiplication, inversion,
addition, and subtraction) which have different computational costs.

ECC in Jacobian coordinates In Jacobian coordinates, we use (x : y : z) to represent
the affine point (x/z2; y/z3). The elliptic curve equation becomes:

Y 2 = X3 + aXZ4 + bZ6.

Doubling step: we represent the point Q ∈ E(Fp) in Jacobian coordinates as Q =
(XQ, YQ, ZQ). The formulae for doubling T = 2Q = (XT , YT , ZT ) can be computed
as:

XT = 9X4
Q − 8XQY

2
Q. YT = 3X2

Q(4XQYQ −XT )− 8Y 4
Q. ZT = 2YQZQ.

Adding step: let Q = (XQ, YQ, ZQ) and T = (XT , YT , ZT ) ∈ E(Fp). Then the point
R = T +Q = (XR, YR, ZR), can be computed as:

XR = (2YQZ
3
T − 2YT )

2 − 4(XQZ
2
T −XT )

3 − 8(XQZ
2
T −XT )

2XT .

YR = (2YQZ
3
T − 2YT )(4(XQZ

2
T −XT )

2XT −XR)− 8YT (XQZ
2
T −XT )3.

ZR = 2ZT (XQZ
2
T −XT ).



4 Authors Suppressed Due to Excessive Length

Algorithm 1: Scalar Multiplication
Input: α = (αnαn−1 . . . α1α0)2 radix 2 decomposition ∈ Fp, P ∈ E(Fp)
Output: αP

1 T ← P
2 for i = n− 1 to 0 do
3 T ← 2T
4 if αi = 1 then
5 T ← T + P

6 return T

3 Our architecture for MMM (CIOS Method)

The Coarsely Integrated Operand Scanning (CIOS) method presented in Algorithm 2,
improves the Montgomery Algorithm by integrating the multiplication and reduction.
More specifically, instead of computing the product a · b, then reducing the result, this
method allows an alternation between iterations of the outer loops for multiplication and
reduction. The integers (p, a and b) are seen as lists of s words of size w. This algorithm
requires an array T of size only s+ 2 to store the intermediate state. The final result of
the CIOS algorithm is composed by the s+ 1 least significant words of this array at the
end.

Algorithm 2: CIOS algorithm for Montgomery multiplication [11]
Input: p < 2K , p′ = −p−1mod 2w, w, s , K = s · w :bit length, R = 2K , a, b < p
Output: a · b ·R−1 mod p

1 T ← 0;
2 for i← 0 to s− 1 do
3 C ← 0;
4 for j ← 0 to s− 1 do
5 (C, S)← T [j] + a[i] · b[j] + C

}
α cell

6 T [j]← S

7 (C, S)← T [s] + C
8 T [s]← S

 αf cell
9 T [s+ 1]← C

10 m← T [0] · p′ mod 2w
}
β cell

11 (C, S)← T [0] +m · p[0]
12 for j ← 1 to s− 1 do
13 (C, S)← T [j] +m · p[j] + C

}
γ cell

14 T [j − 1]← S

15 (C, S)← T [s] + C
16 T [s− 1]← S

 γf cell
17 T [s]← T [s+ 1] + C

18 return T ;



Title Suppressed Due to Excessive Length 5

The alternation between multiplications and reductions is possible since the value ofm
(in line 11 of the Algorithm 2) in the ith iteration of the outer loop for reduction depends
only on the value T [0], which is computed by the first iteration of the corresponding
inner loop. In order to perform the multiplication, we have modified the CIOS algorithm
of [11] and designed this method with a systolic architecture. Indeed, instead of using an
array to store the intermediate result, we replace T by input and output signals for each
Processing Element. As a consequence, our design uses fewer multiplexers decreasing as
a consequence the number of slices taken by our design.

4 Hardware Implementation

4.1 Block DSP in Xilinx FPGAs

Modern FPGA devices like Xilinx Virtex-4, Virtex-5 and Artix-7 as well as Altera Stratix
FPGAs have been equipped with arithmetic hardcore extensions to accelerate digital
signal processing applications. These DSP blocks can be used to build a more efficient
implementation in terms of performance and reduce at the same time the demand for area.
DSP blocks can be programmed to perform basic arithmetic functions, multiplication,
addition and subtraction of unsigned integers. Figure 1 shows the generic DSP structure
in advanced FPGAs. DSP can operate on external input A,B and C as well as on feedback
values from P or result PCIN.

Figure 1: Structure of DSP block in modern FPGA device.

4.2 Proposed Architecture

The idea of our design is to combine the CIOS method for the MMM presented in
[11] with a two-dimensional systolic architecture in the model of [13,20,24]. As seen
in section 3, the CIOS method is an alternation between iterations of the loops for
multiplication and reduction. The concept of the two-dimensional systolic architecture
presented in Section 2 combines Processing Elements with local connections, which take
external inputs and handle them with a predetermined manner in a pipelined fashion.
This new architecture is directly based on the arithmetic operations of the CIOS method



6 Authors Suppressed Due to Excessive Length

Figure 2: data dependency in general systolic architecture.

of Montgomery Algorithm. The arithmetic is performed in a radix-w base (2w). The
input operands are processed in s words of w bits. We present many versions of this
method. We illustrate our design for s = 16 architecture, denoted NW-16 (for Number of
Words). We describe it in detail as well as the various Processing Element behaviours. In
order to have less states in our Final State Machine (FSM), we divided our Algorithm 2
of Montgomery in five kinds of PEs (α, β, γ, αf , γf ). Our efficient architecture comes
from the fact that the data dependency in the CIOS algorithm allows to perform several
operations in parallel. Figure 2 presents the dependency of the different cells. Below we
describe precisely each cell. The letters MSW stand for the Most Significant Word and
LSW for the Least Significant Word. In our notation the letter C denote the MSW of
the result and the letter S the LSW.

α cell The α cell corresponds to lines 5 and 6 of Algorithm 2. Its operations are described
in Algorithm 3. Notice how registers are embedded into the cell, avoiding in this manner

Algorithm 3: α cell
Input: a[i], b[j], CIn(= C), SIn(= T [j])
Output: COut, SOut

1 t1← SIn + CIn

2 t2← a[i] · b[j]
3 t3← t2 + t1
4 COut ←MSW(t3)
5 SOut ←LSW(t3)
6 return COut, SOut

the usage of an external memory. This cell corresponds to one iteration of the first inner
loop. As such it must be used several times in a row (the number of iterations in the
inner loop). This chain of α cells is terminated by an αf cell (alpha final) corresponding
to lines 7, 8 and 9 of Algorithm 2. Once the first α cell (for each outer loop) is computed,
data is available for the β cell (it requires T [0]). It is preferable to consume this data as
soon as it is available as to minimize memory usage.



Title Suppressed Due to Excessive Length 7

αf cell The αf cell corresponds to the end of the first inner loop. It is just an addition
as shown in Algorithm 4.

Algorithm 4: αf cell
Input: CIn(= C), SIn(= T [s])
Output: COut(= T [s+ 1]), SOut(= T [s])

1 t1← SIn + CIn

2 COut ←MSW(t1)
3 SOut ←LSW(t1)
4 return COut, SOut

β cell The β cell is used to compute the m value for each outer loop as well as the first
special iteration of the second inner loop. Its operations are described in Algorithm 5.
Once the β cell computation has been done, it now becomes possible to compute the

Algorithm 5: β cell
Input: SIn(= T [0]), p′, p[0]
Output: COut, SOut

1 t1← SIn · p′
2 m←LSW(t1)
3 t2← p[0] ·m
4 t3← SIn + t2
5 COut ←MSW(t3)
6 return COut, m

second inner loop with γ cells.

γ cell The γ cell corresponds to one iteration of the second inner loop. As such these
cells must be chained so as to complete the whole second inner loop. For each cell in this
chain,the samem value is required. Value that is changed for each outer loop iteration (m
is computed by the β cell). Since a new m value may be computed before the end of the
γ chain, the value must be propagated along the cells in the same chain. Its operations
are described in Algorithm 6.

Algorithm 6: γ cell
Input: CIn(= C), SIn(= T [j]), m, p[j]
Output: COut, SOut

1 t1← SIn + CIn

2 t2← m · p[j]
3 t3← t1 + t2
4 COut ←MSW(t3)
5 SOut ←LSW(t3)
6 return COut, SOut, m



8 Authors Suppressed Due to Excessive Length

γf cell Finally, the γf cell terminate each γ cell chain. It consists in two additions as
shown in Algorithm 7. The difference with the αf cell is that in this case both output

Algorithm 7: γf cell
Input: CIn(= C), S1In(= T [s]), S2In(= T [s+ 1])
Output: COut(= T [s]), SOut(= T [s− 1])

1 t1← S1In + CIn

2 t2←MSW(t1)
3 SOut ←LSW(t1)
4 COut ←LSW(S2In + t2)
5 return COut(= T [s]), SOut(= T [s− 1])

values S and C are used in the rest of the computation. C is used by the αf cell and S
by an α cell.

4.3 Our architectures

Firstly, we will start with the NW-16 architecture which contains 6 PEs of type alpha and
6 of type gamma. An MMM can be performed with this architecture in 66 clock cycles.
Similarly, in order to implement the NW-32 architecture and the NW-64 architecture
it is required to double the number of cells each time. We provide a comparison of our
architectures at the end of this section.

NW-16 Architecture In this architecture, the operands and the modulo are divided
in 16 words. The NW-16 architecture is designed in the same way as the NW-32 an
NW-64. This example illustrates the scalability of our design. The NW-16 architecture is
composed of 15 Processing Elements distributed in a two-dimensional array, where every
Processing Elements are responsible for the calculus involving w-bit words of the input
operands.

The 15 Processing Elements are divided like this: 6 α cells, 1 αf cell, 1 β cell, 6 γ
cells et 1 γf cell. As said previously, the number of other PE type (αf , β, γf ) remains
unchanged whatever the number of words in the design. In order to evaluate the number
of clock cycles of the NW-16 architecture, the first parameter is

6 = max{number of α cells, number of γ cells},

implying that our algorithm requires to loop s + 6 times. We can perform the mul-
tiplication with our design in 66 clock cycles since our design requires three states
(66 = 3× (s+ 6)). The different results of this architecture for bit-length 256 are given
in Table 1.

Architectures comparison The Table 2 shows a comparison between the different
architectures. The number of clock cycles for every architecture is equal to 3× (s+ nb),
such that nb = max{number of α cells, number of γ cells}, implying that our algorithm



Title Suppressed Due to Excessive Length 9

Figure 3: Proposed Montgomery modular multiplication architecture of NW-16.



10 Authors Suppressed Due to Excessive Length

Artix-7 DSP Frequency Clock cycles

MMM (s=16/K=256) 29 146 66

α 2 379 1

γ 2 379 1

β 2 453 1

αf 1 460 1

γf 2 443 1

Table 1: Implementations of cells and MMM (NW-16).

require to loop s + nb times. It is interesting to notice that all our architectures are
scalable and can target the different security levels useful in cryptography.

CIOS s=8 s=16 s=32 s=64

K=256 32 16 8 4

K=512 64 32 16 8

K=1024 128 64 32 16

K=2048 256 128 64 32

Clock cycles= 3× (s+ nb) 33 66 132 264

Number of cells 6 +3 12 +3 24 +3 48 +3

Table 2: Comparison of our architectures

4.4 ECC implementation

ECC algorithms when implemented in a sequential way have the advantage that the
number of finite field arithmetic modules can be reduced to a minimum. For example,
only one adder, one multiplier and one subtraction unit (can be an adder) are needed
for point addition and doubling. Parallelization between multiplication, addition and
subtraction was achieved. We proposed in Figure 4 and Figure 5 the dataflow graphs for
point addition and doubling. In this design we use our efficient systolic architecture of



Title Suppressed Due to Excessive Length 11

MMM to perform squaring or multiplication. The Table 4 summarizes the implementation
results of the scalar multiplication. We present a results with both NW-8 and NW-16
architectures. To check the correctness of the hardware results, we compare the results
given by the FPGA with sage software implementation.

5 Experimental Results

The Table 3 summarizes the FPGA post-implementation results for the proposed versions
of MMM architectures. We present results for NW-16 architecture. The designs were
described in a hardware description languages (VHDL) and synthesized for Artix-7 and
Virtex-5 Xilinx FPGAs. We present the different results after implementation of bit-
length k which are given in Table 3. As it is shown in Table 3, an interesting property
of our design is the fact that the clock cycles are independent from the bit length. This
property gives to our design the advantage of suitability to different security level. In order
to implement the modular Montgomery multiplication for fixed security level, we must
choose the most suitable architecture. The results presented in this work are compared
with the previous work [4,5,18,19] in the Table 3. We can notice that our results are
better than [19] considering every point of comparison i.e. the number of slice and the
number of clock cycles. Considering the number of slices, we recall that [19] used an
external memory to optimize the number of slices used by their algorithms. Considering
the comparison with [18], our design requires less slices and can ran at a better frequency,
without considering the huge progress in the number of clock cycles. Our design performed
the MMM in 66 clock cycles for the 512 and 1024 bit length corresponding to AES-256
and AES-512 security level, while [18] performed the multiplication in 1540 clock cycles
for the AES-256 security level and 3076 for the AES-512 security level.

6 Conclusion

In this paper we have presented an efficient hardware implementation of the CIOS method
of MMM over large prime characteristic finite fields Fp. We give the results of our design
after routing and placement using a Artix-7 and Virtex-5 Xilinx FPGAs. Our systolic
implementations is suitable for every implementation implying a modular multiplication,
for example RSA, ECC and pairing-based cryptography. Our architectures and the de-
signs were matched with features of the FPGAs. The NW-16 design presented a good
performance considering latency × area efficiency. This architecture can run for all the
bit length corresponding to classical security levels (128, 256, 512 or 1024 bits) in just
66 clock cycles. Our systolic design using this method CIOS is scalable for any other
number of words. Then we showed that using this multiplier, it is possible to achieve an
efficient scalar multiplication.



12 Authors Suppressed Due to Excessive Length

Xilinx FPGAs

Our works A7Our works V5 [19] V5 [18] VE [5] VII [4] VII [14] V [1] K7 and V5

512 1024 512 1024 512 1024 512 1024 1024 1024 512 1024512 K7512 V5

Freq 106 65 97 65 95 130 95.2 95.6 116.4 119 72.1 79.2 176 123

Cycles 66 66 66 66 96 384 1540 3076 1088 1167 – – 66 66

Speed µs 0.622 1.013 0.680 1.015 1.0102.95316.03132.021 9.34 9.80 – – 0.374 0.536

Slice Reg 2164 4208 3046 6072 3876 6642 – – – – – – 5076 4960

Slice LUTs 1789 5242 1781 5824 – – 2972 5706 9319 9271 31256243 8757 10877

BRAM 0 0 0 0 128 256 – – – – – – 0 0

Table 3: Comparaison of our work with state-of-art implementations.

Slice DSPs BRAM Freq Slice FF Slice LUT

NW-8 (256) 3745 33 12 98 8281 9722

NW-16 (256) 3770 34 12 130 8313 9255

NW-8 (512) 7066 92 23 59 16500 20394

NW-16 (512) 7116 60 23 74 16501 19199

Table 4: Implementations of ECC (Jacobian) in Xilinx FPGA.



References

[1] Bigou, K., Tisserand, A.: Single base modular multiplication for efficient hardware
rns implementations of ecc. In: Conference on Cryptographic Hardware and Embed-
ded Systems. p. 123–140 (September 2015)

[2] Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to elliptic curve cryptography.
Springer Science & Business Media (2006)

[3] Hariri, A., Reyhani-Masoleh, A.: Bit-serial and bit-parallel montgomery multipli-
cation and squaring over gf. IEEE Transactions on Computers 58(10), 1332–1345
(2009)

[4] Harris, D., Krishnamurthy, R., Anders, M., Mathew, S., Hsu, S.: An improved unified
scalable radix-2 montgomery multiplier. In: Computer Arithmetic, 2005. ARITH-17
2005. 17th IEEE Symposium on. pp. 172–178 (June 2005)

[5] Huang, M., Gaj, K., El-Ghazawi, T.: New hardware architectures for montgomery
modular multiplication algorithm. Computers, IEEE Transactions on 60(7), 923–936
(July 2011)

[6] Huang, M., Gaj, K., Kwon, S., El-Ghazawi, T.: An optimized hardware architec-
ture for the montgomery multiplication algorithm. In: Cramer, R. (ed.) Public
Key Cryptography – PKC 2008, Lecture Notes in Computer Science, vol. 4939,
pp. 214–228. Springer Berlin Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-78440-1_13

[7] Iwamura, K., Matsumoto, T., Imai, H.: Systolic-arrays for modular exponentiation
using montgomery method. In: Rueppel, R. (ed.) Advances in Cryptology — EU-
ROCRYPT’ 92, Lecture Notes in Computer Science, vol. 658, pp. 477–481. Springer
Berlin Heidelberg (1993), http://dx.doi.org/10.1007/3-540-47555-9_43

[8] Joux, A.: A one round protocol for tripartite diffie–hellman. Journal of Cryptology
17(4), 263–276 (2004), http://dx.doi.org/10.1007/s00145-004-0312-y

[9] Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (Jan 1987)

[10] Koblitz, N.: Elliptic curve cryptosystems. Mathematics of computation 48(177), 203–
209 (1987)

[11] Koç, C., Acar, T., Kaliski, B.S., J.: Analyzing and comparing montgomery multipli-
cation algorithms. Micro, IEEE 16(3), 26–33 (Jun 1996)

[12] Kung, H.: Why systolic architectures? Computer 15(1), 37–46 (Jan 1982)
[13] i Lee, K.: Algorithm and VLSI architecture design for H.264/AVC Inter Frame

Coding. Ph.D. thesis, National Cheng Kung University, Tainan, Taiwan (2007)
[14] Manochehri, K., Pourmozafari, S., Sadeghian, B.: Montgomery and rns for rsa hard-

ware implementation. Computing and Informatics 29(5), 849–880 (2012)
[15] Miller, V.: Use of elliptic curves in cryptography. In: Williams, H. (ed.) Advances

in Cryptology — CRYPTO ’85 Proceedings, Lecture Notes in Computer Science,
vol. 218, pp. 417–426. Springer Berlin Heidelberg (1986), http://dx.doi.org/10.
1007/3-540-39799-X_31

http://dx.doi.org/10.1007/978-3-540-78440-1_13
http://dx.doi.org/10.1007/978-3-540-78440-1_13
http://dx.doi.org/10.1007/3-540-47555-9_43
http://dx.doi.org/10.1007/s00145-004-0312-y
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31


14 Authors Suppressed Due to Excessive Length

[16] Miller, V.S.: Use of elliptic curves in cryptography. In: Conference on the Theory
and Application of Cryptographic Techniques. pp. 417–426. Springer (1985)

[17] Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

[18] Ors, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware implementation of a
montgomery modular multiplier in a systolic array. In: Parallel and Distributed
Processing Symposium, 2003. Proceedings. International. pp. 8–pp. IEEE (2003)

[19] Perin, G., Mesquita, D.G., Martins, J.a.B.: Montgomery modular multiplication on
reconfigurable hardware: Systolic versus multiplexed implementation. Int. J. Recon-
fig. Comput. 2011, 61–610 (Jan 2011), http://dx.doi.org/10.1155/2011/127147

[20] Reymond, G., Murillo, V.: A hardware pipelined architecture of a scalable mont-
gomery modular multiplier over gf(2m). In: 2013 International Conference on Re-
configurable Computing and FPGAs (ReConFig). pp. 1–6 (Dec 2013)

[21] Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

[22] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

[23] Tenca, A.F., Koç, Ç.K.: A scalable architecture for montgomery multiplication. In:
Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems, First
International Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1717, pp. 94–108. Springer (1999),
http://dx.doi.org/10.1007/3-540-48059-5_10

[24] Vucha, M., Rajawat, A.: Design and fpga implementation of systolic array archi-
tecture for matrix multiplication. International Journal of Computer Applications
26(3), 0975 – 8887 (july 2011)

A Elliptic curve operations scheduling

http://dx.doi.org/10.1155/2011/127147
http://dx.doi.org/10.1007/3-540-48059-5_10


Title Suppressed Due to Excessive Length 15

Figure 4: DFG for the point addition
algorithm.

Figure 5: DFG for the point
doubling algorithm.


	High-performance Elliptic Curve Cryptography by Using the CIOS Method for Modular Multiplication
	References

