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ABSTRACT
The rising number of attacks targeting processors atmicro-architecture
level encourages more research on hardware level solutions. In this
position paper, we specify a new RV32S “secure” instruction set
architecture (ISA) derived from the RV32I RISC-V ISA. We propose
modifications in the ISA to prevent timing side-channels, strengthen
control flow integrity and ensure micro-architectural state isolation.
The goal is to provide a new minimal hardware/software approach
through which software attacks exploiting hardware vulnerabilities
can be circumvented.
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1 INTRODUCTION
In 2018, the Spectre [11] and Meltdown [15] attacks received a
wide attention by showing how unsecured our modern central
processing units (CPUs) are. But it has been known for a long time
that the hardware was a source of vulnerabilities (e.g. as shown in
2005 by Bernstein [4] and Percival [19]).

What makes these new attacks so important is that, in the mean-
time, software security as gained a lot of maturity. Hardware is
becoming the weakest security link in our systems.

Motivation. To improve the security of our CPUswemust rethink
how to design them by taking into account the security issues from
the beginning. Numerous solutions have been proposed.

(1) Adding more privilege levels (trusted execution environ-
ments (TEEs) such as Keystone [12], Hex-Five’s MultiZone).

(2) Ensuring stronger access control policies to access memory
(physical memory protection (PMP), Morello/CHERI [24]).

(3) Hardware hardening: build the processor around stronger
primitives (CEA’s IntrinSec project).
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(4) Circumventing the problem by modifying the software: for
example the retpoline countermeasure is an instruction pat-
tern intended to prevent hardware speculation (and failing
in some edge cases).

All these solutions are needed, but there is one that we think
is not explored enough: modifying the instruction set architecture
(ISA) to enable the software/hardware interface to “talk” about
security, even in the abscence of any memory management unit
(MMU). The most notable works in this area are, as far as we know,
from Yu et al. [25] and Ge et al. [9] that propose to modify the ISA
to fight timing side-channels.

Contribution. In this paper, we propose recommendations to
design an ISA for CPUs supporting critical systems. These recom-
mendations are centred around 3 themes. After giving our design
guidelines in section 2, we show how to limit the ISA’s power to
mitigate some side-channels in section 3. We propose to restrict
the ISA even more to have stronger control flow guarantees in
section 4. Finally, we decribe a RISC-V extension to allow the ISA to
express security boundaries in section 5. We conclude in section 6
by showing the links between our recommendations.

2 DESIGN GUIDELINES
We acknowledge that a trade-off is required between performance,
energy consumption and security. To achieve a high CPU secu-
rity, worthy of a critical system, we must compromise on both
performance and energy consumption.

2.1 Principles
In order to guide our proposals, we identified a list of generic
principles that help us decide if a feature should or should not be
included in our secure system. We are following here the example
given by Patterson and Waterman [17] who give the following
principles as RISC-V design guidelines: cost, simplicity, performance,
isolation of architecture from implementation, room for growth, code
size and programmability. Our own principles are listed below.

Simplicity. To ensure security, we have to limit the attack surface.
Simple systems can be modelled in an easier way, allowing the blue
team to predict the behaviour of the system and therefore identify
weaknesses. The simplicity principle opposes the guarantee of retro-
compatibility: old interfaces must be tossed.

Principle of least privilege. Any entity in the system must only
be able to do what it is designed to do and nothing more.

Habeas Corpus. The principle of least privilege requires compart-
mentalization, the habeas corpus principle is about the interaction
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between these compartments. A compartment management (cre-
ation, pause, data modification, . . . ) can only be performed from
inside a compartment of higher power.

Transparency. The security of a system must not rely on its
opacity (Kerckhoffs’s principle). The secure system designer and
user are usually not the same entities, and the first must prove the
system security to the second.

Prove yourself. Human developers are error-prone. No amount
of dedication can prevent the one mistake that will break a system
security. Therefore, secure systems must push for and ease the use
of proof-oriented software. A lot of properties can and must be
proven: memory safety, absence of data races, no data leakage etc.
Proofs must be everywhere, in hardware, in software and in the
tools used for development.

Defence in depth. If a given property holds on a program, then
we surely do not need additional hardware isolation. Mathematical
proofs are only valid under a set of hypotheses. When the program
runs on hardware and thus get a physical incarnation (power con-
sumption, memory access timings etc.), then the hypotheses may
change and as a consequence, proofs do not hold any more. As a
result, several protection mechanisms, sometimes redundant, must
be put in place to counteract the collapse of the abstractions.

2.2 Designing a new secure ISA
In the rest of this paper, we make recommendations to build a new
secure ISA by relying on the RISC-V specification. As a consequence,
the recommendations should be read as a modification of the RV32I
base ISA to form a new one: RV32S (S as in Secure).

3 THE SEMANTICS OF SCA HARDENED
INSTRUCTIONS

Since the cache timing attack on AES [4], software and hardware
designers try to devise techniques to avoid such vulnerabilities.
The principle is to avoid any timing dependency on a secret value.
Sometimes, it can be achieved in software by reordering the instruc-
tions.

But there are several difficulties with this technique: the applica-
tion developer does not have perfect control on how the compiler
generates instructions corresponding to its code. In particular, wide-
spread compilers do not conserve timing semantics: today, timing
sensitive applications must be written in assembly. Yet new re-
search has shown that timing semantics preserving compilers are
possible [3].

Unfortunately, it is not enough if there is no guaranteed timing
semantics at the ISA level. A classic example is an hardware multi-
plication whose duration depends on the data fed. In this case, the
timing leakage reappears.

The conclusion is that we cannot let the sole responsibility of
preventing side-channels falling on the developers’ shoulders. Some
confidentiality properties must be guaranteed by the hardware and
the software ecosystem (compilers, libc, operating systems (OSs),
. . . ) must take advantage of it. This idea has been explored by Yu et
al. [25], with a RISC-V extension to ensure that confidential data
is only handled by safe instructions, by tracking and propagating
confidentiality labels on data.

Here we suggest simpler solutions: we rely on the compiler to
know what is confidential or not, and we enable it to map confiden-
tial data to confidential registers, no hardware tracking needed.

3.1 Confidential registers
In order to communicate the desire to enforce stronger confiden-
tiality with respect to side-channels, we can tag some registers
as confidential. The micro-architecture must try to enforce this
guarantee (with an effort related to its security profile) and the
semantics of the instructions is modified in consequence.

Recommendation 1 Confidential registers
Tag some registers (e.g. x8 to x15 ) as confidential, with the
following semantic consequences.
• It is not possible to branch depending on a confidential
register.
• Instructions are authorized only if their timing is not
data dependant (integer multiplication and division in
particular may be forbidden depending on their hardware
implementation).
• They cannot be used as the source address in load and
store instructions.

Any violation of these rules should raise an hardware security
fault.

In addition, the hardware must try to prevent any leakage on
these registers’ values. Depending on the security profile, these
registers can be hardened: the values are masked to avoid power
consumption leakage, the micro-architecture uses hardened execu-
tion units (e.g. masked computation) for instructions involving at
least a confidential register, . . .

Recommendation 2 Automatic memory encryption
An additional behaviour can be attached to the use of confiden-
tial registers as destination registers for a load or as the second
source register for a store. In this case, we can encrypt the
confidential data in memory, as soon as it leaves the pipeline.
Devising a sound encryption scheme for that purpose would
require a paper of its own.
If the hardware security contexts (HSCs) were used (concept
developped in section 5), we could use the automatic encryption
feature to bind a data to an HSC: the encryption key would
depend on the current context, therefore preventing another
context to read the data.

3.2 Consequence of confidential registers
Instructions at the confidentiality boundary, that have a confidential
input and a public output or vice-versa, can be trivially detected.
There is no need to forbid such instructions, but they should be
carefully audited to ensure that the developer intention is respected.

On the software side, confidential registers allow the compiler to
have a clear semantics for confidentiality: if a data is confidential,
it must only be put into confidential registers. Doing an unsafe
operation such as branching on a confidential register is now a
compile time error (it cannot even be compiled).
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Static analysis can now trivially stress out all the confidentiality
boundaries (converting a confidential data into public data, . . . ),
making it easier to detect flaws in the confidentiality policy. It
becomes easier to prove such policies automatically, with e.g. a
theorem prover.

3.3 Random number generator
A lot of security-related applications require a strong and reliable
random number generator. Without an hardware random number
generator, applications must harvest system-level entropy them-
selves (usually by timing peripherals). But system-level entropy
cannot provide strong guarantee of randomness, and then a piece
of software becomes responsible for converting this entropy into a
suitable random number generator. All these steps may leak infor-
mation through side-channels.

Recommendation 3 RNG instructions
An instruction for random number generation should be added.
CSPRNG rd : a cryptographically secure pseudo-random num-
ber generator, following NIST SP 800-90A, to use for most pur-
poses (including generation of cryptographic keys).

Adding the CSPRNG instructions changes the nature of the ISA.
Without them, we can call the ISA functional: the conformance of
a device to the specification can be tested by testing its functionali-
ties. But a CSPRNG cannot be tested to know if it works properly:
vulnerable random number generators can successfully pass all the
randomness statistical tests. A good CSPRNG implementation can
only be recognized by its design and implementation, not (only) by
its functionality. The transparency of the implementation becomes
critical to build trust between designers and users. Now, the ISA
has become a formal contract between software and hardware that
is not only tied to functionality, that cannot be tested: it has become
a formal ISA.

4 IMPROVING SECURITY GUARANTEES
WITH STRICTER CONTROL FLOWS

Abusing the control flow is a common way to tamper with a system.
Ensuring the static integrity of an application usually requires
to compare the hash of the binary you are about to launch with
a truth value stored somewhere safe. But the attacker can still
abuse the legit instructions in your application, and reorder them
to build their payload. This principle is behind return-oriented
programming (ROP) [20] that uses a chain of gadgets (instructions
patterns of interest to the attacker) that are glued together with
RETURN instructions.

Preventing ROP (and its variants) is a widely studied problem.
Control flow integrity (CFI) tries to ensure that the control flow of
the initial application is respected and not abused. CFI solutions
usually verify that (forward) jumps and returns (backward jumps)
can only go to legitimate addresses. These techniques can be im-
plemented in software [2], now with the compiler automatically
adding the verification code [22].

But CFI can also be proposed in hardware. In [6], Davi et al.
propose an efficient way to restrict where a jump can land to by

adding new CFI dedicated instructions. The CHERI project pro-
poses, among other things, to protect pointers with unforgeable
capabilities [24]. SOFIA [7] is an instruction set randomization (ISR)
solution that encodes the control flow graph in the encrypted bi-
nary. It enables the processor to verify the correct behaviour of the
running application.

More generally, it seems that for all sufficiently large pieces
of software, we observe the emergence of virtual machines, often
called weird machines [8]. The problem with these virtual machines
is that security properties usually do not transpose into them: the
attacker gains an effective way to bypass countermeasures. To
counteract this issue, the most effective technique seems to limit
the size and complexity of all the programs.

Presenting some relevant RISC-V instructions. In this section rec-
ommendations, we propose tomodify the JAL and JALR instructions.
Here is a brief reminder of how these instructions work.
• JAL rd, offset (jump and link): jump to the address given
by the offset (sign extended, relative to the program counter
(PC)). Put the following instruction address into rd.
• JALR rd, offset(rs1) (jump and link register): jump to
the address given by the offset (sign extended) applied to the
value in rs1. Put the following instruction address into rd.

4.1 Same-length instructions only
Variable-length instructions help ROP attacks: the attacker can
choose to interpret a part of a long instruction as a short one, giving
him more opportunities to find useful instructions in a given piece
of code. Additionally, variable-length instructions make possible a
new class of errors in case of bad alignment with respect to a given
instruction size.

The solution is simple, a secure ISA must only propose same-
length instructions. In the case of RISC-V, the C extension must
therefore be forbidden.

The cost is the missed opportunity of code size reduction due to
the compressed representation (estimated to 25 − 30% [18]), as well
as the corresponding performance improvement due to increased
effective instruction cache size.

Recommendation 4 Same-length encoding
Enforce same-length instruction encoding (forbid RISC-V C
extension).

This Recommendation 4 allows us to recover two bits per in-
structions (previously used to encode instruction size).

Recommendation 5 Jump alignment modification
Change the JAL instruction alignment requirement: the J im-
mediate now encodes for a multiple of 4 bytes.

4.2 Removing forward indirect jumps
Indirect jumps are at the origin of the biggest defender challenge:
decide between valid and invalid control flows. Since an indirect
jump can jump to any address depending on a data value, knowing
the jump destinations requires to find all possible values. As shown
in [10], this task is (provably) not possible. In order to make control
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flow statically decidable and to make runtime countermeasures
easier to deploy, we must forbid forward indirect jumps.

This is a simple way to promote a structured control flow at the
ISA level. Notably, the recent WebAssembly virtual machine has
similar (even stronger) constraints, a controversial feature and the
origin of inefficient compiler integration [1].

Recommendation 6 Forbidding forward indirect jumps
Remove the JALR instruction to forbid forward indirect jumps.
A mechanism is presented in section 5 to reintroduce safer
indirect jumps.

Removing the JALR instructions has several consequences that
must be mitigated.
• Dispatcher patterns become costly: we need to add a new
DISPATCH instruction as shown in subsection 4.3.
• It becomes impossible to transfer the control flow to a differ-
ent program. This point is dealt with in section 5.
• It is no longer possible to return to the instruction following
a JAL instruction even if we stored the correct address in
a register. In particular, it prevents to simply return from
a procedure. Apply Recommendation 7 to enable a RETURN
instruction.
• There is no possibility to perform a direct long jump. Apply
the trick detailed below if you really want to enable long
jumps.

Recommendation 7 Returns
For efficient returns from procedures, add a new RETURN in-
struction. Semantically, the instruction should jump to the in-
struction following the last executed JAL whose bit 7 was set
to 1.
In other words, the CPU should implement a call stack. The
JAL destination register becomes useless and its freed bits (all
but the least significant, i.e. 4 bits) can be used to extend the
jump reach. A call to JAL now pushes the return address to the
call stack if bit 7 (the least significant bit of rd) is 1. Executing
RETURN pops the last address in the call stack and jumps to it.

Implementing the call stack. Recommendation 7 asks for a call
stack, and its integrity must be guaranteed. Yet, there are several
possibilities to implement it. Here is a proposal.
• Introduce a new register csp (call stack pointer) which is
implicitely used by JAL and RETURN.
• Introduce a hidden register csp_depthwhich hold the depth
of the call stack pointer, independantly of csp’s value.
• csp can be read from and written to with a dedicated CSR
(control and status register) mapping.
• To ensure integrity, a push to the call stack (with JAL) or a
pop (with RETURN) must protect and verify the addresses in
the stack with cryptography.

In this case, if we execute JAL 1, offset at the 32-bit address
a0, the following sequence occurs.
• Compute return address: a1 = a0 + 4.
• We store the encrypted address in memory, taking 64 bits:
M[csp] ← Ek (a1 | |csp_depth), with a suitable encryption

algorithm E with key k . This binds the return address to the
csp’s depth.
• csp← csp+8 (two words increment).
• csp_depth← csp_depth+1.

To RETURN:
• csp← csp−8.
• csp_depth← csp_depth−1.
• Decrypt the return address, consumming 64 bits on the call
stack: a1 | |csp_depthver if ← E−1k (M[csp]).
• Verify the csp match: csp_depthver if ==? csp_depth.
• If we have a match, proceed with the jump to a1.

Long jumps. By removing JALR, we prevent the possibility to
do long jumps, outside of the reach a JAL instruction. The new
JAL jump range is ±32 MiB (4 bits taken from the rd register in
Recommendation 7 and 1 bit gained from Recommendation 5).

Long jumps can be obtained by, for example, modifying the
LUI x0, imm instruction to store the immediate value into a tem-
porary xLJ register. At the next JAL instruction, the jump destina-
tion is the combination of the xLJ value and the JAL own immediate
value. At the same time, the xLJ value is reset to 0.

But do we really need long jumps? If we implement Recommen-
dation 10, the impossibility to do long jumps is a soft limit on the
size of a compartment, which can be a good security property.

4.3 Adding a dispatch instruction
Removing the JALR instruction can really impact the performances
of dispatchers: when the program must branch to numerous differ-
ent instructions depending on a data value. Previously, the JALR
instruction was used for this, but if we follow Recommendation 6
that is not possible any more. The alternative is the inefficient
pattern of cascading branching instructions.

To recover the lost performances, we can, as in [10], introduce a
new DISPATCH instruction.

Recommendation 8 Dispatch instruction
Introduce a DISPATCH rs1, imm instruction. Where rs1 is the
decision register and imm is an unsigned immediate value that
gives a bound to the dispatch.
If the DISPATCH instruction is at address a0 then the program
branches to a0 + 4+ 4 ∗ rs1 if rs1 < imm. If imm ≤ rs1, then the
program branches to the “error” address a0 + 4 + 4 ∗ imm.

5 HARDWARE SECURITY CONTEXTS
Themicroarchitecture has been shown to be the source of numerous
information leakages. In 2005, Bernstein [4] proposed a technique
to exploit cache timings to recover an AES cryptographic key. He
showed how the key can be deduced from the timings of array
lookups. Later, Percival showed in [19] that since different hardware
threads share the same cache memory at some level, it becomes
possible to spy on one thread from another one. They were the first
to reveal the isolation issue at the hardware level. Unfortunately,
this problem was not taken seriously and was even amplified by
the addition of multiple performance-oriented mechanisms directly
exploiting shared information (speculation, branch prediction . . . ).
Finally, this led to the publication in 2018 of the famous Spectre [11]
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and Meltdown [15] attacks, but also of their multiple variants [5,
16, 21, 23] showing that the whole modern microarchitecture is
impacted.

Vulnerabilities on devices of multiple manufacturers [11, 13, 14]
have shown that the isolation issue is not just the result of poor
implementation choices, but is a deeper problem that requires re-
thinking the architecture. Depending on the executed application,
we need to make the software able to send specific security informa-
tio to the hardware. But it also has to preserve the basic abstraction
role of the ISA, by keeping a clean and simple interface.

5.1 The problem of leaky abstractions
Considering security, from the software point of view, the abstrac-
tion provided by current ISAs can be a real burden. If it greatly
simplifies the functional vision of the system, it does not take into
account the multiple physical phenomena or other artificial mecha-
nisms exploited by attackers.

Timing variations, fault injections or speculation mechanisms
are all existing possibilities on the hardware side but totally hidden
on the software side. Current software is completely blind to threats
targeting the microarchitecture since they are out of the scope of
the ISA’s semantics.

Oneway to solve this issue is to radically change that by adapting
the ISA to give it the full responsibility of hardware micromanage-
ment as proposed in [9]. Dedicated instructions can be added to be
able to flush independently cache memories or prediction tables,
create speculation barriers etc. However, if this represents an inter-
esting approach in the short-term to be able to patch the system at
any moment (the way that the software manages the hardware can
be easily changed by modifying the code), it represents a dangerous
approach in mid to long-term.

Modern CPU microarchitectures can be extremely heteroge-
neous, from a very simple pipeline to multithreaded cores with
many different performance-oriented mechanisms. First, manag-
ing hardware security at the software-level involves being able to
support all these different cases with the ISA. For that purpose,
each mechanism must have dedicated instructions, which totally
breaks the abstraction role of the interface. The final result of this
approach is that software must be designed depending on the tar-
geted microarchitecture. Each future target change will require
more or less significant modifications to be secure: portability of
secure application becomes impossible. Second, considering the
whole system security (both hardware and software issues) only
at the software-level directly impacts the code size. Increasing the
software complexity opens the way to more mistakes by develop-
ers. In addition, the new micromanagement instructions offer new
possibilities for the attackers, increasing the attack surface.

Finally, a clean interface between hardware and software helps
to simplify security problems, potentially allowing automatic veri-
fication of security properties. From that point, we can deduce the
following recommendation.

Recommendation 9 No micro-architecture management
Forbid all micro-architecture management instructions, cache
management in particular.

However, it is clear that we must have a tool to guide these
micro-architectural operations.We introduce now a newway to talk
about security in the ISA by using an implementation-independent
concept.

5.2 Managing security domains with HSCs
We call hardware security context (HSC) a domain where all ex-
ecuted operations respect the rules associated with this domain.
These rules define a security policy which deals with different
properties: isolation, confidentiality, integrity etc.

The notion of security policy is essential to be able to efficiently
design secure applications: it gives an implementation-independent
information to the hardware. And since a security policy is an
abstract concept usable by the software independently of how it is
really implemented, a liberty of implementation is granted to the
hardware developer.

At the ISA level, these security policies are defined with in-
structions. From this analysis and the previous leaky abstraction
issue, we can deduce one more recommendation about micro-
architectural guarantees:

Recommendation 10 HSC instructions
Micro-architectural security guarantees must be provided
through the HSC instructions described in this section.

5.3 RISC-V HSC extension proposal
This proposal can be seen as an extension over our base RV32S ISA.

5.3.1 Single hart. We consider the simplest case where only one
hart (also named hardware thread) is available for the whole system.
Therefore, for the software, there is only one HSC at a time.

HSC data structure. Each HSC is composed of at least two pieces
of data: a cryptographic key and an entry point. The key is gen-
erated, managed and used by the hardware and never directly ac-
cessible by the software. It is used as the HSC identifier: two HSCs
with different keys are different and must be isolated. The entry
point represents the only program counter (PC) allowed to enter
the corresponding HSC.

Additional data can be added to this structure. To illustrate such
a use case, we add a capability register where each bit corresponds
to the ability to perform or not some operations in the given context,
as shown on Table 1. On the same model, other data could be tied
to the HSC: more capabilities, memory ranges etc.

Table 1: Operations on HSC configuration data structures

Configuration hscconf0 hscconf{1..+}

Key Return hash Return hash | Load | Generate
Entry point Read-only Read | Load | Write new
Capabilities Read-only Read | Load | Write less

During execution, these data structures are locally stored in ded-
icated registers: we call them HSC configurations (or hscconf). As
an example, we arbitrarily consider that we have only two hscconf
registers available. Each hscconf is composed of the same three
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pieces of data described previously: key, entry point and capabil-
ities. The first register, hscconf0, corresponds to the properties
of the currently executed HSC. The properties of an HSC cannot
be changed during its execution: hscconf0 is read-only. The other
hscconf1 register defines an HSC that can be modified with the
adequate rules and switched to.

Accessing and modifying a hscconf register.
First, HSCREAD rd, hscconfs1, offset is used to read a value
inside configuration register hscconfs1 with offset defining the
specific element of the data structure (e.g. 1 for key, 2 for entry
point or 3 for capabilities). The key must not be directly accessible
by the software. To still be able to identify it, a 32-bit hash of the
key is returned instead of the key itself.

Different instructions are then used to modify the configurations.
HSCGENKEY hscconfd is used to generate a new key, with hscconfd
different from 0. After that operation, the hscconfd register is also
tagged as new: it is writable. Its capabilities are set with the same
value as the current capabilities in hscconf0 and can only be re-
duced.

HSCWENTRY hscconfd, rs1 is used to change the entry point
of a configuration tagged as new: rs1 contains the corresponding
address. Lastly, HSCWCAP hscconfd, rs1 is used to modify the
capabilities of a configuration tagged as new: rs1 contains the capa-
bility values that are verified against the current context capabilities.
A register is no longer new when it is stored or a switch occurs.

Storing and loading. The number of different existing HSCs in
the whole system is not fixed and can be very important: all the
HSC data configurations cannot be simultaneously contained in
registers. We need to be able to perform specific memory accesses
to store and load HSC data. HSCSTORE hscconfs1, offset(rs1)
is used to store an HSC in memory, at address rs1+offset.

In the same way, HSCLOAD hscconfd, offset(rs1) is used to
load an HSC from memory. Because the memory alone is not a safe
place to store sensitive data, some measures must be implemented
to ensure that loaded configurations from memory are valid and
have not been modified. Different strategies are possible: dedicated
memory range to store HSCs, memory access control, stored data
encryption using the HSC key . . .

Context switching. Finally, we need to change the current exe-
cuted HSC: we can introduce HSCMV hscconfd, hscconfs1 . This
instruction is used to transfer all values contained in hscconfs1 to
hscconfd. Both HSCLOAD and HSCMV are able to switch the context
by modifying the hscconf0 register when hscconfd = 0. During
an HSC switch, the different hscconf registers are not cleared, so
they can be used to transfer HSC data to the next HSC. Another new
register, prevhsc , can be used to automatically store the 32-bit
hash of the HSC caller key.

Now, assume we want to create a new HSC and switch to it.
hscconf1 is used to configure it, x1 contains its entry point and x2
its capabilities. A possible code sequence is

• HSCGENKEY hscconf1 to generate a new key.
• HSCWENTRY hscconf1, x1 to write the entry point.
• HSCWCAP hscconf1, x2 to set the capabilities.
• HSCMV hscconf0, hscconf1 to switch to the new HSC.

5.3.2 Multiple harts and cores. Modern systems are a bit more com-
plex than a simple hart running: they can be numerous, distributed
within several cores. We consider here a static model where an HSC,
to safely execute more instructions simultaneously, have to explic-
itly request it. Then, the hardware has to verify that this request is
possible, depending on the security policy. We need to introduce
a notion of parallelism to correctly use all the available resources.
For that purpose, we introduce two new instructions for HSC man-
agement which assume that all resources are interconnected and
support HSC.

HSCSTART rd, hscconfs1 is used to create a new instance
of the HSC in the hscconfs1 structure by launching it in a new
concurrent hart. This instance can be launched anywhere at the
hardware-level, depending on the implementation, as long as its
security policies and capabilities can be used there. The necessary
resources are then statically allocated and associated to the cor-
responding HSC. If the operation is possible and successful, then
rd = 0 else rd = 1. As a complement, HSCEND rd is used to end
the current hart. It allows to statically release resources owned by
an HSC, making them available to execute a hart with another HSC.
If the operation fails, then rd = 1 else nothing happens due to the
HSC termination.

These two instructions deviate significantly from the traditional
approach of having always-on harts. But in the post transient exe-
cution attacks world, that is not possible anymore. The only other
possibility is to forbid resource sharing for different HSCs, simulta-
neous multithreading becomes impossible if it involves more than
one HSC.

5.3.3 Secure property extension. Naturally, HSC support provides
all the needed information to allow isolation: each executed instruc-
tion or data handling is performed in an HSC. The implementation
must ensure that clear barriers between the HSC are respected at
the hardware-level. But more importantly, HSC support provides
interesting tools to ensure other security properties.

To offer privacy of an HSC, the key provided by each one can be
used to encrypt all code and data stored in memory. It ensures that
only an HSC, with its key, can access this information. In section 4,
we talked about CFI issues and why we need to banish indirect
jumps. HSC support offers a secure alternative with the possibility
to create a new HSC with a particular entry point before switching.

6 CONCLUSION
In this position paper, we propose to modify the ISA in order to
offer strong security guarantees. With the introduction of hardware
security contexts (HSCs), we have an ISA isolation primitive that
both hardware and software can rely on. Furthermore, we can use
HSCs to build other protections such as restricting indirect jumps
to HSC switches, or binding confidential data to an HSC using
confidential registers.

Work is needed to validate the different proposals and to pre-
cisely understand the underlying trade-offs, in particular for the
micro-architecture, for the compilers and operating systems.
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