Exploring speculation barriers for RISC-V
selective speculation

Herinomena Andrianatrehinal, Ronan Lashermes![0000-0002-0309-6533] " jogen])
Paturel![0009-0008—6120-2147] ' Qi1 Rokicki! [0000-0002—0195-096X] 1y, 4

Thomas Rubiano!

Univ Rennes, Inria, CNRS, IRISA

Abstract. Speculative execution poses significant security risks to mod-
ern out-of-order cores, exemplified by attacks such as Spectre. Numerous
countermeasures, including selective speculation in both software and
hardware, have been proposed. This approach allows enabling or dis-
abling speculative behavior based on circumstances. However, challenges
such as evolving attack methods and the complexity of simulating out-
of-order cores make these solutions difficult to reproduce and compare.

This paper investigates the use of RISC-V speculation fences to achieve
selective speculation in a realistic scenario where the microarchitecture
cannot distinguish between confidential and non-confidential data. We
examine three aspects: the semantics of speculation fences (ranging from
broad to selective constraints), the placement of fences in programs by
compilers, and their hardware implementation in a modified NaxRiscv
RISC-V out-of-order core. Using a new security metric, we compare con-
figurations within a unified framework.

Our findings highlight that speculative execution of load instructions
is critical for out-of-order core performance. Furthermore, we demon-
strate that selective speculation without confidentiality-tagged data fails
to achieve a meaningful security-performance trade-off.

1 Introduction

Modern microarchitectures have undergone many modifications to maximize the
utilization of execution units and enhance overall system performance. One such
optimization is speculative execution, a predictive technique used to anticipate
and execute instructions before their outcomes are definitively known. By specu-
lating on the most probable path based on prior execution history, the processor
can continue executing subsequent instructions without waiting for earlier ones
to complete. In cases of incorrect predictions, the processor performs a rollback
and discards the misspeculated instructions. However, it is challenging to com-
pletely revert all microarchitectural states altered during speculative execution,

The ARSENE project was funded by the “France 2030” government investment plan
managed by the French National Research Agency, under the reference “ANR-22-
PECY-0004”

2 A. Herinomena et al.

such as those in cache memories or branch predictors. This inability to clear
all speculative traces can be exploited through vulnerabilities like Spectre [19],
wherein an attacker influences speculative execution to leak sensitive information
by leaving observable states within the microarchitecture.

Since the discovery of the Spectre vulnerability, numerous mitigation tech-
niques have been proposed, as detailed in Section 3. However, these mitigations
often produce inconsistent results and are frequently difficult to reproduce, as
noted in [26].

This inconsistency can be attributed to several factors. First, the significant
impact of test environments on the results of certain mitigation measures, such
as the benchmarks used. Second, the difficulty of openly experimenting on spec-
ulative microarchitectures, as researchers must choose between using simplified
gem) models of the most complex x86 cores or precise models of simpler RISC-V
cores. Understandably, companies with access to RTL models of complex cores
do not publish the security assessments of their products. Third, differing threat
models and initial assumptions make it difficult to compare solutions designed
to address different types of threats and varying levels of knowledge regarding
which data requires protection.

Thus, although a variety of mitigation approaches have been proposed to
address Spectre, the lack of reproducibility has made it challenging to accurately
assess and compare the effectiveness of each solution.

A widely adopted approach is selective speculation. The goal is to delay
the execution of instructions that potentially access or leak sensitive data, or
contribute to leakage, until the processor is certain that it is not a misspeculation.
This is achieved through various strategies such as inserting barrier instructions,
also called fence instructions, or directly modifying the microarchitecture to
handle this functionality in hardware.

In this article, we examine the potential of speculation barriers to achieve ef-
ficient selective speculation by providing a thorough and comprehensive analysis
of their impact on both performance and security. We aim to address the critical
question: Is selective speculation with dedicated barrier instructions a
viable solution to defend against Spectre attacks?

To investigate this, we created a test environment for exploring and compar-
ing different implementations of the selective speculation approach in a realistic
testing environment. We varied the semantics of the barrier instructions, their
placement policies, and the hardware implementations.

Our contributions include:

— The definition of different fence instructions for selective speculation, along
with their hardware implementation in the open-source NaxRiscv [32] out-
of-order processor.

— The modification of an LLVM-based compiler toolchain with several policies
for inserting the aforementioned fences.

— The definition of a quantitative security metric used for fair comparison be-
tween different Spectre countermeasures, which relies on counting the num-
ber of vulnerable instruction sequences in execution traces.

Exploring speculation barriers for RISC-V selective speculation 3

A critical assumption in this work is that there is no way to differentiate a
load instruction accessing a secret from a load instruction accessing innocuous
data. As a consequence, our compiler passes cannot rely on security annotations
and thus have to protect every load instruction, as in realistic use cases.

During our experimental study, we have evaluated the trade-offs between se-
curity and performance. Our results indicate that — under our assump-
tions — there is no viable trade-off regardless of semantics, placement
policy, or hardware implementation. Fundamentally, the advantage of out-
of-order cores over in-order cores appears to stem largely from load speculation,
which should necessarily be delayed for security reasons.

These findings highlight the critical need for microarchitectures to distinguish
between confidential data that must not be speculated on and other data, if we
are to reconcile out-of-order execution with robust security.

As discussed, inconsistencies in existing results make a direct comparison
between our proposed approach and prior work impossible. Therefore, the com-
parison cannot rely solely on results from the literature and must be conducted
independently. To address this, we implemented the speculative load hardening
(SLH) mitigation [9] due to its relatively straightforward integration, allowing
us to assess it in our test environment and compare its effectiveness with our
own results.

2 Security issues with speculative execution

Speculative execution allows a processor to predictively execute instructions be-
fore it is fully certain of their necessity, established at the commit stage. All
instructions are executed speculatively since execution is done prior to commit,
but most are correctly speculated. Misspeculation means that some instructions
have been executed when they should not have been, with the risk of leaving
traces in the microarchitectural state that can be exploited. These traces can
be observed and used in numerous ways to exfiltrate sensitive data out of its
intended environment.

2.1 Covert and side channels

Covert channels and side channels are communication channels where informa-
tion transfer should not be possible.

They correspond to two different threat models: a covert channel is a com-
munication channel where the attacker controls both the emitter and receiver.
In contrast, in a side channel, the attacker only controls the receiver, while the
emitter is an innocent victim. Covert channels correspond to a stronger attacker
model, capable of actively trying to emit information in the channel. Therefore,
this is the threat model that we aim to address in this paper. As detailed in
Subsection 2.2, the Spectre attacker manipulates the microarchitecture to emit
the target information, making the covert channel the primary threat model
we aim to address in this paper.

4 A. Herinomena et al.

In the context of microarchitecture security, most covert channels exploit
timing differences to communicate information. The emitter tries to set up a
component, e.g. a cache memory, in a state that can be observed by the receiver
through timing variations, e.g. whether a cache line is present or not.

In the microarchitecture, any state can be exploited as a covert channel: cache
memories [4,24], TLB [13], BTB [2], branch predictors [2], prefetchers [31], etc.

Countermeasures exist in the form of dedicated instructions to be applied
during context switches that reset or partition the microarchitectural state [10,
37]. Unfortunately, perfectly implementing these semantics implies applying for-
mal methods during the hardware design to guarantee the absence of information
leakage, a feat that is hardly feasible for the complex speculative cores.

2.2 Spectre

Spectre [19] attacks exploit speculative execution to bypass memory safety bound-
aries, reading and exfiltrating memory where it should not be possible. They
work by tricking the processor into speculatively executing code paths that
should not be executed, due to improper control flow or data flow predictions.
Spectre attacks are generally categorized by the mechanism used to mislead
speculative execution, such as branch prediction or return stack buffer misuse.

One of the most well-known forms of Spectre is Spectre-PHT [19], which
involves manipulating the pattern history table (PHT) used for branch direction
prediction. In Figure 1, an attacker trains the branch predictor to assume a
condition is true, causing speculative execution to proceed down a path where
sensitive data is accessed.

if(x < arrayl_size){
y = array2[arrayl[x] * 4096];
}

Fig. 1: Spectre-PHT attacks in C code

Spectre attacks proceed in two key phases:

Predictor Manipulation The attacker manipulates the branch predictor to as-
sume that the branch condition will likely be met (x < arrayl_size). This can
be done by executing the branch in scenarios where the condition evaluates to
true multiple times.

Data FEzfiltration The same code is executed again, but now with a condition
that should evaluate to false (x > arrayl_size), where x is controlled by the
attacker. However, speculative execution still proceeds with executing the branch
body due to a now incorrect branch direction prediction. During this phase, a
Spectre gadget is executed; it built around three elements:

Exploring speculation barriers for RISC-V selective speculation 5

— Speculation: an instruction that triggers speculative behavior - the if
condition.

— Acquisition: an instruction that can access a secret - a speculative load
with the address arrayl + x reads the secret value s.

— Disclosure: an instruction that translates the secret into a microarchitec-
ture state - here, a second load exfiltrates the secret s into a tag field in
cache memory.

Spectre attacks are especially challenging to mitigate because the mechanisms
for speculative execution are integral to modern processor performance. Differ-
ent variants of Spectre have emerged, each exploiting distinct speculative mech-
anisms:

— Spectre-PHT uses branch direction prediction via the PHT.

— Spectre-BTB leverages branch destination speculation via a branch target
buffer (BTB).

— Spectre-RSB uses speculation from the return stack buffer (RSB).

— Spectre-STL exploits aliasing speculation in the Load Store Queue, known
as store-to-load forwarding.

The adaptability of Spectre to exploit different speculative mechanisms makes
comprehensive mitigation difficult without negatively impacting processor per-
formance.

In our own nomenclature, the primary difference between microarchitectural
data sampling (MDS) attacks [29] and Spectre attacks lies in the threat model.
MDS attacks assume that the targeted application legitimately uses a secret
value, whereas Spectre attacks assume only that a secret is accessible, even if
not directly used by the application.

Within this categorization, Meltdown [21] attacks are considered a subcate-
gory of Spectre attacks, leveraging the speculation of non-occurrence of excep-
tions during execution.

In these threat models, mitigating MDS attacks is essentially about mitigat-
ing covert channels, where Spectre attacks mitigation is more concerned with
the speculation behavior. In this paper, we choose to focus on this latter issue.

3 Related works against Spectre attacks

Spectre attacks that allow arbitrary memory reads are dangerous threats, and
numerous countermeasures have been proposed to mitigate them. The existing
solutions can be categorized into two broad categories: those that only use soft-
ware structures and those that are based around the modification of the processor
hardware.

3.1 Software solutions

The LFENCE x86 instruction has seen its semantics changed after the publica-
tion of Spectre [19]. Previously a read ordering barrier, it is now effectively a

6 A. Herinomena et al.

speculation barrier, preventing all instructions following it from executing, even
speculatively, until all earlier instructions have completed.

LLVM SESES (Speculative Execution Side Effect Suppression) [8] is a naive
mitigation that prevents all possible Load Value Injection [34] attacks using
misspeculated transient execution. This LLVM pass offers the option to add an
LFENCE instruction before each memory read/write instruction and before the
first branch instruction in a group of terminators at the end of a basic block.
Benchmarks [25] show how drastically this mitigation affects performance but do
not evaluate the actual security benefit it provides. We will discuss and compare
these results in later sections.

Retpoline for “return trampoline” prevents Spectre attacks that exploit branch
target injection. This variant leverages indirect branch predictions, such as func-
tion pointers or virtual function calls, to misdirect the CPU into executing un-
wanted instructions before the branch prediction is corrected. Retpoline disables
speculation on indirect branches by trapping speculative execution in an infinite
“safe loop” [1].

SLH is a software mitigation technique designed to protect against the Spectre-
PHT variant. The main idea is to mask or “poison” either the pointer or the
returned value of a speculated load to protect sensitive data. A predicate captur-
ing the speculation status needs to be updated every time a conditional branch
is taken. This predicate can also be transferred through function calls using some
bits in the stack pointer. SLH is well-documented in LLVM and implemented
for x86 [9].

Blade is a software mitigation technique that statically analyzes data flow
from potential sources of secrets to potential sinks and “protects” them using
different approaches. Various variants are proposed depending on the target ar-
chitectures and available tools. Fence or SLH-like masks can be used. In [35], po-
tential sinks are formally identified using a static type system that is “transient-
aware”.

3.2 Hardware solutions

The academic community has been very active on the topic of microarchitecture
security, both in terms of attacks and countermeasures. The hardware-based
countermeasures can further be categorized into three groups: those that rely
on cleanly reversing the changes that misspeculated instructions might have
left in the microarchitecture, those that try to detect a Spectre-like leak, and
those based on formal methods. It is worth noting that there is no open-source
processor with a comparable complexity to Intel, AMD, or Arm cores. The results
of the hardware-based solutions must then be extrapolated to these, without
certainty about the relevance of this transposition. The literature is too extensive
to be described in detail in this document, but pertinent state-of-the-art papers
on the topic include [15] and [26].

Clean reversal of misspeculated microarchitectural state Spectre attacks
are possible because transient instructions persistently modify the microarchi-

Exploring speculation barriers for RISC-V selective speculation 7

tectural state, even when misspeculated. Therefore, a valid solution would be to
revert the microarchitectural state exactly as it was before the misspeculated ex-
ecution. While the concept is straightforward, implementing it is challenging, as
all the possible states must be reverted. That includes caches, branch predictors,
finie state machines, Load-Store Queues, etc.

Several works have explored this type of countermeasure, such as InvisiS-
pec [38], CleanupSpec [27], DAWG [18], and SafeSpec [17]. They all differ in
their specific implementations, impacting both performance and security.

Delays based on Speculative Secret Tracking Another strategy is to iden-
tify the occurrence of a Spectre gadget in order to trigger the suspension of
speculative behavior. The idea is to identify the risky behavior corresponding to
the three elements of a Spectre gadget: speculation, acquisition, and disclosure:
Taint tracking is necessary between acquisition and disclosure to detect if secret
data is likely to leak. It is possible to follow these steps and act at each of them,
either by preventing any speculation, forbidding speculative load instructions,
or preventing the covert channel. The earlier the intervention, the safer but more
costly the solution is in terms of performance.

Many proposals using this principle have been made, all differing in their
implementations: NDA [36], STT [40], SpecShield [3], Efficient InvisiSpec [28],
SpectreGuard [11], CondSpec [20], ConTExT [30], InvarSpec [41], Speculative
Data-Oblivious Execution (SDO) [39], DOLMA [22], and Speculative Privacy
Tracking (SPT) [6].

SpecTerminator [16] is the modern synthesis of this line of techniques that
delay unsafe speculative execution with a hardware tainting mechanism and a
way to delay some operations. Yet the reported performance penalty of +6% has
not been reproduced, as reported in [26].

To enhance flexibility, software can be given greater control through dedi-
cated speculation barriers. Our own implementations are described in this paper,
but it was not the first speculation barrier implementation.

In Context-Sensitive Fencing [33], the authors propose automatically inject-
ing speculation barriers in the micro-ops generated by the frontend, depending
on pre-specified security policies. An example policy is to inject a barrier between
control flow instructions and loads. Speculation barriers have also been proposed
by established vendors: Intel’s LFENCE or ARM’s SB; ARM has patented this
latter speculation barrier. Unfortunately, as far as we know, there is no proper
public analysis on placement policies and associated trade-offs between perfor-
mance and security.

While these solutions are interesting, they suffer from two major issues. The
first one is that they are hard to reproduce and therefore to compare. For exam-
ple, InvisiSpec [38] self-reports a performance penalty of +72%, Efficient Invi-
siSpec [28] tries to reproduce this first paper and measures a +50% performance
penalty, NDA [36] does the same and reports +32%. The papers also differ on
what they consider secure: some target specific variants, some all variants known
at the time, etc. In practice, they cannot be compared with respect to security.

8 A. Herinomena et al.

The second issue is that they are not all relying on realistic assumptions.
For example, ConTExT [30] requires annotating secret data by marking with
a dedicated bit in each page table entry. This is actually a strong assumption,
since we do not have the infrastructure today to do that at scale.

Finally, most (but not all) of these previous works build demonstrators using
the gemb simulator with x86. This makes it actually hard to evaluate whether
the corresponding implementations are realistic.

Use of Formal Methods Given the complexity of modern microarchitectures,
how can we ensure that secrets are never speculatively accessed or leaked to a
covert channel?

Some approaches tackle this challenge by establishing hardware-software con-
tracts for speculative behavior. The work of [14] formalizes the interaction be-
tween information leakage models and speculative behavior, demonstrating that
simply delaying speculative load instructions is insufficient; other speculative
behaviors must also be controlled. Speculative taint tracking is shown to be an
effective method for ensuring security.

ProSpeCT [7] implements this speculative behavior contract in hardware. It
ensures that secret values cannot be speculatively leaked by enforcing constant-
time execution. This approach has been implemented on the out-of-order core
Proteus, with performance overheads ranging from 0% to 45%, depending on
the frequency of secret-related operations and the program’s instruction-level
parallelism (ILP).

4 Selective speculation semantics

In this work, we assume that the microarchitecture has no way to determine
whether data in memory or in a register is secret or public. In Spectre attacks,
the microarchitectural control flow is arbitrary since speculative, possibly influ-
enced by the attacker. Therefore, all load instructions are at risk of loading
secret data, even if the program normally forbids it. As a countermeasure, we
propose inserting speculation barriers, also called speculation fences, which are
specific instructions that act on the speculative behavior of the microarchitec-
ture. If load instructions are not speculative, the invariants of the program
remain enforced, and secrets are only handled when allowed by the application.
Speculation is controlled through the insertion of these fences by the compiler.

4.1 Fences Instructions semantics

In this paper, we distinguish between speculation fences, serialization fences, and
conditional (speculation) fences.

Serialization fences: A register-based serialization fence fence.ser rd, rsi
has the following semantics:

Exploring speculation barriers for RISC-V selective speculation 9

1. Predecessor Dependencies: this fence instruction depends on register
rsl to be executed. It cannot be executed if rsi is not available. If rs1 =
%0, then the instruction depends on all architectural registers (x1-x31).

2. Successor Dependencies: subsequent instructions that use rd depend on
this fence instruction. If rd = x0, then the core should assume that the
fence instruction touched all architectural registers (x1-x31), even if no
values were modified.

There is no functionality associated with a serialization fence. Architecturally,
it is a nop (no-operation). It limits the possibility to reorder instructions past
the fence, hence its name.

Therefore, the serialization fence reduces the possible divergences between
the architectural and the microarchitectural control flows. It reduces but does
not eliminate all possible divergences:

— Reordering with respect to source-only or destination-only in-
structions: an instruction that has only sources or destinations (such as
branches notably) can be reordered since there is no dependency relation. A
fence.ser following a branch can be executed before it.

— Delta between register availability and execution: the fact that reg-
isters are available, necessary to resolve a dependency, does not imply that
execution is not speculative. For example, a branch instruction can have
both its registers available, but the condition is not yet computed. In this
case, speculative execution based on this branch condition is possible, even
for a limited speculation window.

In this paper, we only consider register-based serialization instructions. An-
other possibility is to have an instruction-based serialization fence, where de-
pendencies are established purely from program order: the fence depends on all
previous instructions, and all later instructions depend on the fence. It is worth
noting that in modern x86 cores, the LFENCE instruction is an instruction-based
serialization fence, in addition to being a speculation fence.

Register-based ordering gives more possibilities for the microarchitecture to
reorder instructions, by giving finer-grained constraints on instruction depen-
dencies, thus increasing the performances of the solution.

Speculation fences: A speculation fence is a serialization fence that completes
execution only in a non-speculative state, i.e. when the core is certain that it
will commit.

We define it as the instruction fence.spec rd, rsl with the following
semantics in addition to the rules given for serialization fences (1 and 2 are the
same as for fence.ser).

3. Non-speculative Execution: The execution of fence.spec can only ter-
minate in a non-speculative state, meaning that the core is certain that the
instruction will eventually commit (taking into account exceptions, inter-
rupts, etc.).

10 A. Herinomena et al.

Conditional Speculation Fences: A conditional speculation fence, defined as the
instruction fence.cond rsi, is designed to prevent the Spectre-PHT attack,
which exploits a conditional branch as the source of speculation. This version
of the fence follows a conditional branch and uses a predicate stored in rsi to
determine whether the branch results in misspeculation. Hence, additional com-
putation is required to establish a correct predicate value based on the condition
of the branch, which is inserted by the compiler. The conditional speculation
fence must implement the following behaviors:

1. Terminate Speculative Window: If the predicate evaluates to a value
other than 0, the instruction stalls its execution until a non-speculative state
is achieved.

2. Successor Dependencies: All subsequent instructions with a source reg-
ister depend on the conditional speculation fence instruction (equivalent to
previous cases where rd = x0).

5 Hardware implementation of fences

This section details the modifications applied to a modern RISC-V core to im-
plement the different behaviors of the fence instructions previously described.

The target of our work is the NaxRiscv core [32], designed using SpinalHDL.
It is an out-of-order, dual-issue superscalar processor with BTB + GSHARE
+ RSB branch predictors. The NaxRiscv project has a decentralized hardware
design that simplifies the integration of new features using a plugin system.

First, some background on how each relevant component of the NaxRiscv
operates will be provided. Then, we will detail the modifications needed to im-
plement the fence semantics described in Subsection 4.1.

5.1 NaxRiscv description

To keep track of which instruction is currently being executed, the processor
core uses a circular buffer called a reorder buffer (ROB). Each entry in the ROB
is uniquely identified by a RobId and contains all the relevant information about
the corresponding instruction. Internally, the ROB uses two pointers to manage
the flow of instructions: The push pointer indicates the next available entry in
the ROB, used to store the next instruction information. Since the processor
fetches and decodes instructions in order, they are also inserted into the ROB
in program order. The other pointer is the pop pointer, which locates the next
instruction to be committed in the ROB. An instruction can be committed when
it has been fully executed and pointed to by the pop pointer. The ROB ensures
that instructions are committed in program order, even though they may be
executed out-of-order. This maintains the architectural state consistency, as any
exceptions or interruptions can be handled correctly without compromising the
final program state.

To enable out-of-order execution of instructions, the processor needs to main-
tain a list of the dependencies between the instructions that are being processed.

Exploring speculation barriers for RISC-V selective speculation 11

This is done using the Issue Queue and the Dispatch Unit. The Issue Queue stores
the decoded instructions prior to their execution; it also keeps a representation
of the dependencies between all the instructions it stores. The Dispatch Unit
controls which instructions enter and leave the queue. When inserting new in-
structions, the Dispatch Unit retrieves the RobIds of all instructions that write
to the source registers of the instructions being pushed and then computes the
dependencies for the new instruction. When instructions are ready and the corre-
sponding execution units are available, the Dispatch Unit pops these instructions
from the Issue Queue and sends them to the adequate execution unit. The num-
ber of instructions that can be popped from the Issue Queue each cycle depends
on the number of available execution units.

Note that in the ROB and Issue Queue, the registers are not the architectural
registers (x0, ..., x31) - which correspond to the programmer-visible registers
defined by the instruction-set architecture (ISA) - but physical registers. Phys-
ical registers are part of the microarchitecture and are mapped to architectural
registers in the Rename stage. They are used to avoid data hazards during out-
of-order execution.

5.2 Fences Implementations

The implementation of the proposed fences requires modifications to various
elements of the microarchitecture. We will discuss these modifications for each
fence type in the NaxRiscv core.

Serialization fences: To satisfy the predecessor dependency semantic, the
Dispatch Unit monitors whether rs1 = x0 when inserting a fence.ser in-
struction. If this is the case, it reads all entries in the Issue Queue and creates
a dependency with all valid instructions that have a destination register. Simi-
larly, the Issue Queue manages the successor dependencies with respect to rd.
If a newly pushed instruction is a fence and has rd = x0, this means that
all architectural registers (x1 - x31) depend on it. To represent this, we add
a new flag called isFullFence to the associated instruction slots in the Issue
Queue and set it to True. Any incoming instruction will automatically depend
on any instruction in the Issue Queue that has the isFullFence flag set to True.
Our fence.ser implementation uses the physical register of rs2 to temporarily
store the value of the old physical register of rd. During the execution stage, this
value is written to the new physical register of rd. This ensures that the desti-
nation architectural register remains unchanged, even after the Rename stage,
and the normal program behavior is not altered. The use of rs2 is not visible
at the architectural level.

Speculation fences: Speculation fences operate in a similar fashion to the se-
rialization fences. The key difference is that speculation fences cannot complete
their execution while in a speculative state, causing them to stall at a spe-
cific stage in the pipeline. As the NaxRiscv CPU does not differentiate between

12 A. Herinomena et al.

speculative and non-speculative execution (i.e. all instructions are executed spec-
ulatively), a speculation detector module has been implemented to identify
whether an instruction is considered speculative (when we cannot be sure that it
will be committed or not). It uses the ROB to determine if an older instruction
capable of triggering speculation has not yet been committed. The speculation
detector takes the RobId of an instruction as an input and returns a boolean
value indicating whether the instruction is speculative.

We have implemented three different approaches to implement speculation
fences, depending on how they stall when considered speculative.

Ezxecute-Stall Fence Speculation fences cannot exit the execution stage of the
pipeline while in speculative mode, thanks to the speculation detector. This
approach minimizes performance loss by delaying the stall until the last possible
stage before execution. However, this method has a significant drawback: it can
deadlock the pipeline under certain conditions. If a speculation fence instruction
B is speculatively executed before an older one A:

— Instruction B stalls on its execution unit until it is no longer in a speculative
mode.

— Instruction A waits for the execution unit to become available as it is cur-
rently in use by the instruction B.

— Instruction A enforces the execution order, ensuring that the instruction
triggering the speculation executes only after it completes.

To avoid this effect, the Dispatch Unit adds dependencies between each fence
instruction to enforce in-order execution of fence instructions and avoid the

deadlock.

Dispatch-Stall fence The stall can be applied at the dispatch stage, before the
fences enter the execution stage. This enforces in-order execution of the fence
instructions. The Dispatch Unit holds the instruction until the speculation de-
tector confirms a non-speculative state.

Operand-Stall fence Another implementation, called the Operand-Stall Fence,
deviates from the original semantics of speculative fences described in Subsec-
tion 4.1. Nevertheless, this mechanism may offer an alternative perspective on
speculative fences. In this implementation, the fences can be dispatched to an
execution unit as soon as the source register rsi is committed. Instead of con-
firming the execution states of the instructions, this implementation prioritizes
the architectural correctness of source registers. In other words, it ensures the
convergence state of the source register before allowing the execution of the
instructions. Thus, this implementation allows the instructions to execute spec-
ulatively, which diverges from the original semantics.

Conditional speculation fences: Conditional Fences (fence.cond) are unique
among the added fence instructions, as they use only a source register rsi. Dur-
ing the dependency computation in the Dispatch Unit, each subsequent register

Exploring speculation barriers for RISC-V selective speculation 13

automatically depends on all conditional fences present in the Issue Queue (sim-
ilar to the previous rd = x0 case). The execution units read the predicate
from rsi1, as the behaviour of a conditional fence depends on its value. If rsi
0 (signaling a misspeculation), the execute unit stalls until the pop pointer
of ROB reaches the conditional fence’s RobId, forcing the previous conditional
branch to commit and trigger a rescheduling first. Unlike SLH [9], this technique
halts speculative execution entirely, ensuring no speculative traces are left on
the microarchitecture.

6 Security policies to insert fences

The proposed fence instructions enable the evaluation of various strategies at the
compilation level. As noted in 3.1, prior work on compiler-based Spectre mitiga-
tions has focused mainly on x86 and ARM architectures [26]. Some mitigations
are straightforward enough to adapt to RISC-V architectures and serve as our
initial performance references.

Since memory instructions are the primary source of leakage in most Spec-
tre attacks, we implemented an LLVM pass similar to SESES [8] that inserts
fence.spec instructions near memory operations. However, we must ask our-
selves: if only load instructions must be hardened, do stores also need to be
protected? Furthermore, should fences be placed before or after the target in-
structions? Also, could fences be inserted around end-of-branch blocks, calls, or
indirect jumps? Each stage of a Spectre gadget plays a crucial role in executing
a Spectre attack. The speculation and disclosure stages can be carried out using
various instructions and may vary significantly between different microarchitec-
tures. However, the acquisition stage can only be performed using an instruction
capable of loading the secret into a register - a load instruction.

These considerations result in numerous policies based on the combinations of
options, including the various fence semantics introduced earlier. An exhaustive
list of these policies can be found in Table 1.

To replicate SESES behavior in the LLVM RISC-V back-end, we replaced
LFENCE with our new instructions, leveraging their similar semantics. For in-
stance, specall_before_load uses fence.spec.all (fence .spec x0, x0),
while policies prefixed with ser replace fence.spec with fence.ser. We then
modified this pass to handle the cases where rd and rsl are not equal to x0.

To measure performance costs, we implemented a nop policy inserting nops
(a pseudo-instruction for addi x0, x0, 0), which advances the program counter
without architectural impact. Despite its simplicity, it affects both security and
performance, serving as a baseline.

We implemented spec_after_load for comparing the placement of fences
after memory instructions with respect to placing them before. Additionally, the
dependency approach adds fences with operands based on branch conditions,
such as fence.spec rd, rsl (spec_dep_load)or fence.ser rd, rsl (ser_dep_load).
Basic optimizations prevent redundant protection of non-redefined registers within
the same basic block.

14 A. Herinomena et al.

SLH, introduced in 3.1, can also be implemented on RISC-V architectures. On
x86, “misspeculation predicates” are updated with cmov instructions, which are
immune to prediction. Since cmov is absent in base RISC-V, it can be emulated
using bitwise operations like slt, setting rd to 0 or 1 based on comparisons.
Avoiding conditional branches prevents new speculation points, though this re-
quires additional instructions compared to cmov.

SLH was previously translated for RISC-V by Moein Ghaniyoun [12] in the
LLVM back-end. We modified their implementation to create slh and slh-ip
policies, where the -ip suffix denotes Inter-Procedural predicate transfer via the
stack pointer.

A conditional fence can be used to enhance this strategy: instead of poisoning
the load’s value or address, a fence.cond at the start of each block uses the
SLH predicate (if a load exists) to prevent speculative execution of the entire
block, ensuring no transient microarchitectural states. This can also be extended
inter-procedurally, forming the spec_cond_ip policy.

Gadget counts in Table 1 are the same ones as used to generate Figure 3 but
different than in Figure 2. Indeed, in Figure 2 two gadgets occurring at the same
acquisition address are counted twice if they have different speculation sources,
but are counted once in Table 1 and Figure 3.

Performance is measured as the geometric mean of the number of hot cycles
(after the warmup) for the benchmark suite.

7 Benchmark results

To evaluate the effectiveness of the proposed fence semantics and insertion poli-
cies, we first need hardware that implements the former. The three different
types of stalling mechanisms (execute-, dispatch- and operand-stall) were added
in the Naxriscv core, making three different processors. We also need a set of
benchmark programs to evaluate the potential security and performance implica-
tions of our methods. We have selected the Embench suite [5] for such purposes,
as it is open-source and exercises a wide range of applications. Each program
in the benchmark suite was evaluated using each processor and each fence in-
sertion policy previously described. A “hardware-policy” configuration therefore
corresponds to the specific benchmark binaries compiled with said policy and
run on the simulator corresponding to said hardware. The simulations were car-
ried out using the Verilator simulator, and execution traces were collected in a
format closely resembling O3PipeView from Gem5. From these traces, different
analysis passes were run to extract metrics: instruction mixes, performance, se-
curity, misspeculation windows, etc. These traces also enable the extraction of
the microarchitectural state in case of any detected vulnerability.

Since execution traces only represent executed code, our results only apply to
these executions. In particular, the absence of any Spectre gadget in the traces
is no proof that no gadgets could appear, only that they have a low probability
of doing so.

Exploring speculation barriers for RISC-V selective speculation 15

7.1 Security metrics

Before analyzing the traces, we must define a security metric. Most of the pre-
vious work considers security as a binary value; the execution is either safe or
unsafe with respect to a set of exploits (Spectre-PHT, Spectre-BTB, etc). We
propose a different strategy that is not tied to any exploit. We identify a Spectre
gadget as the combination of 1) a misspeculation trigger, an instruction that ini-
tiates a misspeculation window, 2) a secret acquisition via a load instruction,
and 3) the secret disclosure, where a value depending on the secret is leaked. In
our case, a disclosed value is any value used as an issued load address, an issued
store address or value, or an issued branch operand. During trace analysis,
taint tracking is used for all potential secrets resulting from a load up to a
disclosing instruction. To accurately assess policies that poison addresses (e.g.
slh), we detect the cases where load instructions target the null address and
rule out these gadget cases.

We consider that any such gadget could lead to an exploit and must be
prevented.

It is possible to count the number of these Spectre gadgets in the execution
traces for all benchmarks for each configuration. A gadget is identified by the
address of the acquisition instruction, meaning that if two gadgets found in the
execution trace share the same acquisition instruction, they are only counted
once. This is required since all our benchmarks consist of a loop performing
some operation: the same gadget may be found many times in the traces for
each iteration of the loop. It would be a measure of the benchmark loop count,
not a measure of security, if we counted repeating gadgets.

For any hardware-policy configuration, the security metric is the sum of
Spectre gadgets detected across all benchmarks for this configuration.

Figure 2 depicts the proportions of speculation sources for the Spectre gad-
gets that were detected for several hardware-policy configurations.

We can observe in Figure 2 that most of the gadgets found start from a
misspeculated branch direction (PHT). It is also worth noting that some imple-
mentations are able to mitigate all the gadgets while others focus on disabling
only some kinds of gadgets. For instance, serall_x policies will serialize store
and load instructions, preventing any STL gadgets.

7.2 Security-performance trade-off

Figure 3 represents where the different hardware-policy configurations stand in
terms of gadget-count to performance loss ratio, compared to an unmodified
processor. It is a graphical representation of the data contained in Table 1. We
can observe a well-defined Pareto front that spans from the best-performing, un-
protected configuration to the worst-performing, most-protected configuration.
The latter is equivalent to in-order execution, according to McFarlin et al. [23].

The slh policy, which does not use speculation barriers, is on the Pareto
front. But this policy is not exempt from gadgets, an expected result since it

16 A. Herinomena et al.

Proportion of Gadgets by Source for Each Policy

°
o

Proportion
=]
S

524 4374100 75 ‘112‘ 36 §375Q434Q 56 ‘ 55 ‘351‘313 361 453I‘6. 426 1 55
& &

Fig. 2: Gadget speculation sources, the center number is the gadgets count.

Security vs. Duration

1.0 @ none-execute

@ sPec_before_load-operands

nop_before_load-execute
ser_before_load-operands spec_before_loadstore-operands

ot
®

® ser_before_load-execute

®.serdep-before-load-ansranss

e
)

serdep_before_load-execute

[
>

sih-execute < sPec_cond-execute

o
N

slh_ip-execute @
y specall_before_load-operands
serall_before_load-dispatch 1 2Br SR 0E T e R D e
spec_cond_ip-execute

Gadgets Count (Ratio to none-execute)

spec_before_load-dispatch

o
)

spec_after_load-dispatch

spec_after_load-execute”(_ in-order (estimated) h/e
specall_before_load-dispatcl

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Traces Duration (Ratio to none-execute)

Fig. 3: The hardware-policy configurations according to both their security and
performance metrics.

17

Exploring speculation barriers for RISC-V selective speculation

"9INS YIRWDUS(9Y) 10] (dnurrem oy} I93Je) SO[0AD 107 JO I9QUUNU A} JO URSUI DLIJOUWI0SS 81} SB PAINSLIU ST 90URULIOJDJ

‘¢ 2In31 pur

T 9[qe], Ul 90UO Pajunod aIr INq ‘S9IN0S UOIje[Noads JUSISHIP 9ARY AD([} JI 90IM]) PIJUNOD 9IR SSOIPPeR UOIYSMboe owres o} 3 SULLINIDO
$103pe3 0M) 7 9INII Ul ‘PespU] ‘g INSI Ul U} JUSISHIP INq ¢ 9INJI 9)eIoUsd 0} POs Sk SoUO duIes o) oI | 9[qe], Ul Sjunod jo3per)

N 8¢

N T8

N T8

qs

‘peot
yoeo 40499 0x ‘0x oods-eousy jI9sUT

peoT axo0Faq Trededs

N 0L

9€

"IoJSuRI} 99edl
-paad Teinpeadord-1ojul Yjm puod~oads sy

d1 puoo~oads

N ¢'¢

80T

Ao110d yTs ul se pondwoo ajeorpard
porepdn sAempe ue ‘yi pueiodo se soye)
3] "PROT SUIRUOD ey} YOO[q OISe(q [Ord
Jo Suruurdeq oYj) 18 YI PUOD 8dUSF }I9SU]

puoos~oads

N 9'¢

N 08

INTS

81V

" (yI)2esSIFo ‘gx aI03s
I0 (YI)29SIFO ‘gI PeOT T[D®d 2.40faqQ

UOIJONIYSUI §I ¢ yI oods-edusy JIosU]

@I101SpeROT ©103F0q osods

AR

7L

NT'L

19y

"(YI)29SII0 ‘gI PeOT TDEd 24039

uoPNIsuUr yI ‘yx oads:edusy 1I9sU]

peoT @10I9q ooads

N 99

N 69

N §9

*(YI)29SIF0 ‘gI peOT YOBd 43y D

UOTIONIJSUT gI ‘gx dods- edusF IosU]

peoT I91Je oads

N €9

Gl

‘1ejutod yoe)s ' RIA I9jsuel) ojeorpard
[eanpasoid-1ogur Y3rm uoryejuswa[dut IS

dr7yts

N T°¢

00T

"ADSTY 103 uorjejusmoidwr [y

qTs

N 07

W07

N ET

Gge

Gag

90€

"9uO ST 9ITY J1
UOTYONISUT SUIYOURI(JURUTOP JSOUW puUE
SPeOT UeaM)9q UOIYBZI[eLIds ppe 03 yoeoid
-de oareu ® s1 9] ‘ spuerodo uoronijsur Sur
-YoURIQ JURUIWIOP }SOUL,, 9} WOJJ I03sISol
YI pue peol Suimofoj oy} £q sseIppe se

posn gI Yjym YI ‘gI I9S 90USF }IoSuf

peo1 exoyeq depies

N 8¢

N 8¢

N 02

g9

qq

91

‘peol

Uoed 24039 ‘0X I9S°90USF }I9SU]

(028

peOT oX0jfeq [TeISS

N 8°€

N 8°€

N 6°€

8¢V

8¢V

69¢€

*(YI)2eSFIFO ‘gI PeOT [I®d a.0f

-29Q uononIjsul yx ‘yI I9S'90uUa} Jresuy

peoT exojaq Ies

N 8°€

0€V

"peOT YO®d 9.0foq uorponIisur dou }I9suf

peoT exo03eq dou

N 9°€

A%

‘(ourpeseq) porjdde £orjod oN

2uou

spuexado

yojedstp

231NOd8Xd

spuexado

yojedstp

9I1Nd9Xd

uorydirose(

sureu Ao1oq

(so1045 901) ueewoad
UOI}RIND YIRWOUIE

SHUNO0D j03per)

symsel pue serorjod pajenyess jo JsI T 9[qe],

18 A. Herinomena et al.

targets the PHT variants only. Less expected, we can see in Figure 2 that nu-
merous PHT-variant gadgets are still present. Upon closer inspection, permitted
by our tooling, it appears that most of these gadgets are due to the slh inter-
procedural predicate being loaded from the stack. Furthermore, slh is done
before register allocation with spilling that introduces new unmitigated loads.
Our tests correctly determine that these loads could potentially be hijacked by
an attacker, thus forming a Spectre gadget. More generally, proving a correct
compiler mitigation pass can never be a perfect solution: the arbitrary control
flow in the microarchitecture does not care about the proofs on the binary.

Our policy spec_cond-execute implements the same predicate technique
but, using our new instruction fence.cond, has a security-performance trade-
off close to s1h. However, instead of poisoning load pointers, the fence.cond
disables any speculative execution, incurring a slight overhead compared to slh.

Since widely different hardening techniques, compiler- or hardware-based,
are aligned on Figure 3, it is clear that the ability to execute memory requests
speculatively is the main performance driver for the NaxRiscv core. In our case,
configurations that achieve 0 gadgets have performance levels equivalent to those
of an in-order core. The indiscriminate use of speculation fences, which
is the only viable strategy without microarchitectural knowledge of
which data is confidential, does not allow for secure execution at out-
of-order performance levels.

Since microarchitectural control flow can be arbitrary, and thus any fence
might be speculatively bypassed, one might expect that no policy could prevent
all gadgets. Yet some policies, such as spec_after_load-execute, have success-
fully prevented all gadgets in our benchmarks. Therefore, even if no speculation
barrier-based policy can guarantee the complete absence of gadgets, it may still
offer strong security in practice.

7.3 Area comparison

Since all the changes that were brought to the Naxriscv core are synthesizable,
we can also measure the hardware costs of the proposed mechanisms. As a base-
line, we considered the core configured as dual-issue with a 32-level deep Issue
Queue, with support for single and double precision floating point operations,
compressed instructions, and four execution units in total. A Xilinx XC7K325T
was used as the target field-programmable gate array (FPGA), and synthesis
was done using Xilinx Vivado 2023.1. In its base configuration, the NaxRiscv
uses =~ 26k look-up tables (LUTs) and ~ 15k flip-flops (FFs), and the maxi-
mum operating frequency reported by Vivado is 51.6 MHz. As shown in Table 2,
the overhead is relatively significant with +6.5k LUTs or +25% at best for the
execute-stall hardware variant. The costs include the addition of an execution
unit dedicated to our fences and the speculation detector (= 0.9k LUTS).
When analysing the critical paths of our modified cores, we can observe that
the modifications of the Dispatch Unit and the addition of a speculation detec-
tor play a major role in the operating frequency degradation. The speculation

Exploring speculation barriers for RISC-V selective speculation 19

detector has to perform chained comparisons of all the possible RobIds, adding
a significant amount of logic on the critical path.

Table 2: FPGA Resources Comparison for Fence Implementations

Fence Implementation LUTs FFs FMAX
Baseline 25811 15105 51.6 MHz
execute-stall 32375 (+25%) (16241 (+8%)(38.1 MHz
dispatch-stall 29076 (+13%)(15437 (+2%)[50.0 MHz
operand-stall 31024 (+20%)[15318 (+1%)|32.9 MHz

7.4 Limitations

Given the significant effort required to experiment with both custom out-of-order
cores and custom compilers, some of our choices have been dictated by technical
feasibility and may limit the scope of our results.

First, we must note that, to achieve a secure implementation, the number of
gadgets must be 0. Any other value implies that an attacker could potentially
exploit the specific conditions that result in a gadget. Our security metric serves
merely as an indication that the implementation is secure, not as a definitive
proof.

Also, it is possible that a bigger Naxriscv configuration, with a wider issue
width and a larger Issue Queue, could lead to better performance for the same
level of security by enabling more reordering possibilities. However, in our hard-
ware implementations that strictly adhere to the fence.spec semantics, fences
cannot be reordered relative to one another, imposing a strict limit on reordering
possibilities overall.

Finally, a known mitigation is delay-on-miss, where the core delays the
execution of speculated loads only if the target is not in cache memory. This
countermeasure cannot be efficiently evaluated in our settings: the Embench
benchmarks focus on hot execution paths, where instructions and data are al-
ready in cache if possible. But the delay-on-miss mitigation has a different
threat model: that data in cache memories is public. In our own threat model
where data in cache could be confidential, the delay-on-miss therefore appears
as a new point that coincides with none-execute: fast and non-secure, which
has been confirmed experimentally.

8 Conclusion

Despite the strong understanding of how Spectre leaks data, research into miti-
gation continues to face difficulties in providing complete protection against this
vulnerability while maintaining a reasonable performance level. In this evalua-
tion of selective speculation through speculation barriers, every load instruction

20 A. Herinomena et al.

is assumed to potentially access sensitive data and requires protection. However,
results reveal that this approach is not efficient in such an attack model. By pro-
viding speculation barriers, the ISA shifts the responsibility for security to the
developer and compiler, which are tasked with using them correctly. However,
our results suggest that there is no way to use them correctly and efficiently,
which significantly hinders their practical adoption. We recommend that any
ISA specification for speculation barriers be accompanied by a thorough evalu-
ation of their security and performance implications. Besides, the performance
impact is so significant that adopting an in-order architecture may be a more
viable solution for complete protection against Spectre. The main challenge of
selective speculation is identifying which instruction or data must be restricted
from speculative execution to avoid data leak.

Lack of insight into the program’s secrets forces the hardware to overpro-
tect itself, resulting in unnecessary performance losses. Yet, could this trade-off
between performance and security be overcome if the architecture had precise
knowledge of sensitive data?

References

1. Abdul Kadir, M.F., Wong, J.K., Ab Wahab, F., Abidin Bharun, A.F.A., Mohamed,
M.A., Zakaria, A.H.: Retpoline technique for mitigating spectre attack. In: 2019
6th International Conference on Electrical and Electronics Engineering (ICEEE).
pp. 96-101 (2019)

2. Aciigmez, O., Kog, C.K., Seifert, J.: Predicting secret keys via branch prediction.
In: Abe, M. (ed.) Topics in Cryptology - CT-RSA 2007, The Cryptographers’
Track at the RSA Conference 2007, San Francisco, CA, USA, February 5-9, 2007,
Proceedings. Lecture Notes in Computer Science, vol. 4377, pp. 225-242. Springer
(2007)

3. Barber, K., Bacha, A., Zhou, L., Zhang, Y., Teodorescu, R.: Specshield: Shielding
speculative data from microarchitectural covert channels. In: 28th International
Conference on Parallel Architectures and Compilation Techniques, PACT 2019,
Seattle, WA, USA, September 23-26, 2019. pp. 151-164. IEEE (2019)

4. Bernstein, D.J.: Cache-timing attacks on aes (2005)

5. Burgess, A., Whetter, A., Field, G., Markall, G., Oosenbrug, H., Pallister, J., Ben-
nett, J., Grech, N., Langlois, P., Cook, S.: Embench iot: Open benchmarks for
embedded platforms. https://github.com/embench/embench-iot (2020), gitHub
repository

6. Choudhary, R., Yu, J., Fletcher, C.W., Morrison, A.: Speculative privacy track-
ing (SPT): leaking information from speculative execution without compromising
privacy. In: MICRO ’21: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, Virtual Event, Greece, October 18-22, 2021. pp. 607-622. ACM
(2021)

7. Daniel, L., Bognar, M., Noorman, J., Bardin, S., Rezk, T., Piessens, F.: Prospect:
Provably secure speculation for the constant-time policy. In: Calandrino, J.A.,
Troncoso, C. (eds.) 32nd USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, August 9-11, 2023. pp. 7161-7178. USENIX Association
(2023)

https://github.com/embench/embench-iot

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Exploring speculation barriers for RISC-V selective speculation 21

Developers, L.: Llvm seses - speculative execution side effect suppression. https:
//groups.google.com/g/llvim-dev/c/EL8rUhvRCgo, accessed: 2024-10-25
Developers, L.. Speculative load hardening. https://llvm.org/docs/
SpeculativeLoadHardening.html, accessed: 2024-10-25

Escouteloup, M., Lashermes, R., Fournier, J., Lanet, J.: Under the dome: Prevent-
ing hardware timing information leakage. In: Grosso, V., Péppelmann, T. (eds.)
Smart Card Research and Advanced Applications - 20th International Conference,
CARDIS 2021, Liibeck, Germany, November 11-12, 2021, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 13173, pp. 233—-253. Springer (2021)
Fustos, J., Farshchi, F., Yun, H.: Spectreguard: An efficient data-centric defense
mechanism against spectre attacks. In: Proceedings of the 56th Annual Design
Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06, 2019.
p. 61. ACM (2019)

Ghaniyoun, M.: Moein ghaniyoun’s website. https://moeinghaniyoun.github.io/,
accessed: 2024-10-25

Gras, B., Razavi, K., Bos, H., Giuffrida, C.: TLBleed: When Protecting Your CPU
Caches is not Enough. In: Black Hat USA (Aug 2018)

Guarnieri, M., Kopf, B., Reineke, J., Vila, P.: Hardware-software contracts for
secure speculation. In: 42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021. pp. 1868-1883. IEEE (2021)

Hu, G., He, Z., Lee, R.B.: Sok: Hardware defenses against speculative execution
attacks. In: 2021 International Symposium on Secure and Private Execution En-
vironment Design (SEED), Washington, DC, USA, September 20-21, 2021. pp.
108-120. IEEE (2021)

Jin, H., He, Z., Qiang, W.: Specterminator: Blocking speculative side channels
based on instruction classes on RISC-V. ACM Trans. Archit. Code Optim. 20(1),
15:1-15:26 (2023)

Khasawneh, K.N., Koruyeh, E.M., Song, C., Evtyushkin, D., Ponomarev, D., Abu-
Ghazaleh, N.B.: Safespec: Banishing the spectre of a meltdown with leakage-free
speculation. In: Proceedings of the 56th Annual Design Automation Conference
2019, DAC 2019, Las Vegas, NV, USA, June 02-06, 2019. p. 60. ACM (2019)
Kiriansky, V., Lebedev, I.A., Amarasinghe, S.P., Devadas, S., Emer, J.S.: DAWG:
A defense against cache timing attacks in speculative execution processors. In:
51st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
2018, Fukuoka, Japan, October 20-24, 2018. pp. 974-987. IEEE Computer Society
(2018)

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Ex-
ploiting speculative execution. In: 2019 IEEE Symposium on Security and Privacy
(SP). pp. 1-19 (2019)

Li, P., Zhao, L., Hou, R., Zhang, L., Meng, D.: Conditional speculation: An ef-
fective approach to safeguard out-of-order execution against spectre attacks. In:
25th IEEE International Symposium on High Performance Computer Architec-
ture, HPCA 2019, Washington, DC, USA, February 16-20, 2019. pp. 264—-276.
IEEE (2019)

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,
Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading
kernel memory from user space. In: 27th USENIX Security Symposium (USENIX
Security 18) (2018)

https://groups.google.com/g/llvm-dev/c/EL8rUhvRCgo
https://groups.google.com/g/llvm-dev/c/EL8rUhvRCgo
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://moeinghaniyoun.github.io/

22

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A. Herinomena et al.

Loughlin, K., Neal, I., Ma, J., Tsai, E., Weisse, O., Narayanasamy, S., Kasikci, B.:
DOLMA: securing speculation with the principle of transient non-observability. In:
Bailey, M.D., Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021. pp. 1397-1414. USENIX Association (2021)
McFarlin, D.S., Tucker, C., Zilles, C.B.: Discerning the dominant out-of-order per-
formance advantage: is it speculation or dynamism? In: Sarkar, V., Bodik, R.
(eds.) Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2013, Houston, TX, USA, March 16-20, 2013. pp. 241-252. ACM (2013)
Percival, C.: Cache missing for fun and profit (2005)

Phoronix: Intel c¢xl r lvi benchmarking. https://www.phoronix.com/review/
intel-cxlr-1vi, accessed: 2024-10-25

Randal, A.: This is how you lose the transient execution war. CoRR
abs/2309.03376 (2023)

Saileshwar, G., Qureshi, M.K.: Cleanupspec: An "undo" approach to safe specula-
tion. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-16, 2019. pp.
73-86. ACM (2019)

Sakalis, C., Kaxiras, S., Ros, A., Jimborean, A., Sjalander, M.: Efficient invisible
speculative execution through selective delay and value prediction. In: Manne,
S.B., Hunter, H.C., Altman, E.R. (eds.) Proceedings of the 46th International
Symposium on Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-
26, 2019. pp. 723-735. ACM (2019)

van Schaik, S., Milburn, A., Osterlund, S., Frigo, P., Maisuradze, G., Razavi, K.,
Bos, H., Giuffrida, C.: RIDL: Rogue in-flight data load. In: S&P (May 2019)
Schwarz, M., Lipp, M., Canella, C., Schilling, R., Kargl, F., Gruss, D.: Context: A
generic approach for mitigating spectre. In: 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA, February
23-26, 2020. The Internet Society (2020)

Shin, Y., Kim, H.C., Kwon, D., Jeong, J., Hur, J.: Unveiling hardware-based data
prefetcher, a hidden source of information leakage. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. pp. 131-145. ACM (2018)

SpinalHDL: Naxriscv: An out-of-order risc-v cpu core. https://github.com/
SpinalHDL /NaxRiscv (2024), accessed: 2024-07-11

Taram, M., Venkat, A., Tullsen, D.M.: Mitigating speculative execution attacks
via context-sensitive fencing. IEEE Des. Test 39(4), 49-57 (2022)

Van Bulck, J., Moghimi, D., Schwarz, M., Lippi, M., Minkin, M., Genkin, D.,
Yarom, Y., Sunar, B., Gruss, D., Piessens, F.: Lvi: Hijacking transient execution
through microarchitectural load value injection. In: 2020 IEEE Symposium on
Security and Privacy (SP). pp. 54-72 (2020)

Vassena, M., Disselkoen, C., von Gleissenthall, K., Cauligi, S., Kici, R.G., Jhala,
R., Tullsen, D.M., Stefan, D.: Automatically eliminating speculative leaks from
cryptographic code with blade. Proc. ACM Program. Lang. 5(POPL), 1-30 (2021)
Weisse, O., Neal, 1., Loughlin, K., Wenisch, T.F., Kasikci, B.: NDA: preventing
speculative execution attacks at their source. In: Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO 2019,
Columbus, OH, USA, October 12-16, 2019. pp. 572-586. ACM (2019)

Wistoff, N., Schneider, M., Giirkaynak, F.K., Benini, L., Heiser, G.: Microarchitec-
tural timing channels and their prevention on an open-source 64-bit RISC-V core.

https://www.phoronix.com/review/intel-cxlr-lvi
https://www.phoronix.com/review/intel-cxlr-lvi
https://github.com/SpinalHDL/NaxRiscv
https://github.com/SpinalHDL/NaxRiscv

38.

39.

40.

41.

Exploring speculation barriers for RISC-V selective speculation 23

In: Design, Automation & Test in Europe Conference & Exhibition, DATE 2021,
Grenoble, France, February 1-5, 2021. pp. 627-632. IEEE (2021)

Yan, M., Choi, J., Skarlatos, D., Morrison, A., Fletcher, C.W., Torrellas, J.: In-
visispec: Making speculative execution invisible in the cache hierarchy. In: 51st
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2018,
Fukuoka, Japan, October 20-24, 2018. pp. 428-441. IEEE Computer Society (2018)
Yu, J., Mantri, N., Torrellas, J., Morrison, A., Fletcher, C.-W.: Speculative data-
oblivious execution: Mobilizing safe prediction for safe and efficient speculative
execution. In: 47th ACM/IEEE Annual International Symposium on Computer
Architecture, ISCA 2020, Virtual Event / Valencia, Spain, May 30 - June 3, 2020.
pp. 707-720. IEEE (2020)

Yu, J., Yan, M., Khyzha, A., Morrison, A., Torrellas, J., Fletcher, C.W.: Speculative
taint tracking (STT): A comprehensive protection for speculatively accessed data.
IEEE Micro 40(3), 81-90 (2020)

Zhao, Z.N., Ji, H., Yan, M., Yu, J., Fletcher, C.W., Morrison, A., Marinov, D.,
Torrellas, J.: Speculation invariance (invarspec): Faster safe execution through pro-
gram analysis. In: 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 2020, Athens, Greece, October 17-21, 2020. pp. 1138-1152.
IEEE (2020)

	Exploring speculation barriers for RISC-V selective speculation

