
Let’s shock our IoT’s heart: ARMv7-M under (fault) a�acks
Sebanjila K. Bukasa

LHS-PEC INRIA
sebanjila.bukasa@inria.fr

Ronan Lashermes
LHS-PEC INRIA

ronan.lashermes@inria.fr

Jean-Louis Lanet
LHS-PEC INRIA

jean-louis.lanet@inria.fr

Axel Leqay
TAMIS INRIA

axel.legay@inria.fr

ABSTRACT
A fault a�ack is a well-known technique where the behaviour of a
chip is voluntarily disturbed by hardware means in order to under-
mine the security of the information handled by the target. In this
paper, we explore how Electromagnetic fault injection (EMFI) can be
used to create vulnerabilities in sound so�ware, targeting a Cortex-
M3 microcontroller. Several use-cases are shown experimentally:
control �ow hijacking, bu�er over�ow (even with the presence
of a canary), covert backdoor insertion and Return Oriented Pro-
gramming can be achieved even if programs are not vulnerable in
a so�ware point of view. �ese results suggest that the protection
of any so�ware against vulnerabilities must take hardware into
account as well.

KEYWORDS
Physical a�acks, Fault injection, Electromagnetic Fault Injection
(EMFI), Microcontroller, Backdoor, Bu�er Over�ow, Vulnerability
Insertion, Return Oriented Programming

ACM Reference format:
Sebanjila K. Bukasa, Ronan Lashermes, Jean-Louis Lanet, and Axel Leqay.
2018. Let’s shock our IoT’s heart: ARMv7-M under (fault) a�acks. In
Proceedings of ACM Conference, Hamburg, GER, September 2018 (ARES’18),
6 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Internet-of-�ings (IoT) devices are embedded devices with network
connectivity. �is de�nition embrace a wide range of devices, from
a scale uploading daily your weight to a server, to an automated
vacuum cleaner controlled by a smartphone, passing by a drone
able to follow you when you are running and taking pictures or a
smart watch containing your credit card informations. IoT devices
can be wearable or transportable, leading them to interact with
an unfriendly environment. �e a�ackers have physical access to
them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ARES’18, Hamburg, GER
© 2018 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

In this paper, we evaluate if such devices can withstand physical
a�acks. Physical a�acks are mainly divided between two cate-
gories: Observation A�acks (OA) where the a�acker only observes
(measures) the environment of the target, and Fault A�acks (FA).

FA are now a well-known class of physical a�acks where a device
undergoes physical parameters’ modi�cation in order to obtain an
incorrect behaviour. Most classical hardware fault injection means
are power glitches, clock glitches, laser pulses and electromagnetic
pulses, the last technique being used in this paper. To inject a
hardware fault, in most cases, it is necessary that the a�acker has a
physical access to the device. Counterexamples where hardware
faults are generated with pure so�ware are presented in section 2.

FA have been shown extremely e�cient against cryptography,
e.g. the Bellcore a�ack [4] requires any fault, at the correct time, on
an RSA-CRT signature to recover the secret. �erefore nowadays
no cryptographic algorithm can be seriously published without an
assessment of its sensitivity to faults a�acks. But cryptography
is only a small fraction of the possible applications in embedded
devices. And the security of any system does not rely solely on
cryptography.

�e evaluator a�acker model is used: in particular synchroniza-
tion is achieved using a trigger signal directly issued by the targeted
chip. We acknowledge that going from Proofs-of-Concept to real
a�acks on real devices is not straightforward (mostly because of
the di�culties to achieve synchronization) but it is not a stretch to
imagine that well funded a�ackers, or more advanced techniques
would see such a�acks becoming a reality.

In this paper we explore possibilities to create so�ware vul-
nerabilities with hardware fault injection (with EM pulses), not
on cryptography but targeting regular so�ware running on IoT
devices. �ese use-cases are demonstrated experimentally on an
ARMv7-M (Cortex-M3) microcontroller which is present at the
heart of a wide-range of embedded systems.

�ese examples intend to prove that a fault a�ack is able to
create a vulnerability in a code where there is none in the usual
so�ware security meaning. Protecting against vulnerabilities must
encompass protecting against both so�ware and hardware a�acks.

In order to prove our results and ease their reproducibility, we
are publishing our source codes, our data etc. on a git repository
available at https://gitlab.inria.fr/rlasherm/ARMv7M-under-
attacks. Licenses are MIT for so�ware and CC-BY-4.0 for non-
so�ware.

�is paper is organized as follows. A review of other works
on similar topics is presented in section 2 to show how our own
work is articulated with them. �en the fault injection process is

1

ARES’18, September 2018, Hamburg, GER Sebanjila Bukasa, Ronan Lashermes, Jean-Louis Lanet, and Axel Leqay

presented in section 3: the experimental setup, how data is recov-
ered and the assumed fault model are discussed. �e core of our
work is presented in section 4. �e results of fault a�acks achieving
di�erent e�ects are presented and discussed. Finally the conclusion
is drawn in section 5.

2 PREVIOUS WORKS
Fault injection is not a novel technique. It was �rst used to simulate
the e�ect of radiation (of cosmic or nuclear origin) [10] in the 60s.
In order to ensure that a chip could withstand the harsh conditions
of space, they were tested under a laser to prove their resilience
to radiation. In parallel, techniques were invented to have a be�er
resilience: error detecting/correcting codes, adding redundancy…

�e use of fault a�acks against cryptography originated in 1997.
�is year, two papers [4, 5] showed how an a�acker could har-
ness a fault to recover a cryptographic key. From this date, all
cryptographic algorithms must be evaluated with respect to their
sensitivity to fault a�acks.

Consequently, fault a�acks are mostly explored along two re-
search directions. Cryptographers are mainly interested in the-
oretical fault a�acks: “Is an implementation secure with respect
to a particular fault model?” [6]. Whereas the experimental side
evaluates the fault models and validate some theoretical a�acks in
practice [9].

Fault a�acks have been used in the past targeting chips similar
to our target, namely Cortex-M3 (or closely related Cortex-M4)
microcontrollers and mainly targeting cryptographic algorithms.

Underfeeding, clock glitches and Electromagnetic fault injec-
tion (EMFI) rely on the same fault mechanism, timing violation.
In [3], the authors characterize this mechanism on a FPGA with
underfeeding.

Barenghi et al. demonstrated a fault a�ack on an AES running
on Linux with a constant underfeeding in [2]. By lowering the
feeding voltage, faults started to appear. �ey showed that some
instructions are more sensitive than others. In their case, LOAD
instructions were more easily faulted.

EMFI has been demonstrated e�ective against cryptography
in [7]. All instructions could be skipped. �e setup proposed in
this paper has become the de-facto method to perform EMFI, as
described in section 3.

What faults can be achieved and what is the fault model is an
active area of research. In [13, 14], Moro et al. demonstrate instruc-
tion skips (1 skip for 32-bit instructions and 2 consecutive skips
for 16-bit instructions) achieved with EMFI. �e fault mechanism
description proposed in this paper is the most accurate to date
(details in section 3.3). �e authors evaluate assembly-level coun-
termeasures and show that they are e�cient to protect a speci�c
routine but are less e�cient to protect the codebase as a whole
(here FreeRTOS).

In [15], the authors demonstrate another mechanism to achieve
faulty behaviours with EMFI. By targeting precisely the instruction
cache, they were able to obtain a high reproducibility of the faults.
Since several instructions are handled by the cache at the same time,
they showed that up to 4 consecutive instructions can be skipped,
undermining the single instruction skip fault model.

Con�rming the power of fault a�acks, Kelly et al. in [11], evalu-
ate the fault model on an Atmel ATtiny841 microcontroller with
laser fault injection. �ey stress out that if some fault is achieved
once, there always exists a set of parameters that is able to repeat
it, even if not in 100% of the cases. Faults are not random. Conse-
quently, double or more faults during an execution is neither hard
nor more expensive.

3 FAULT INJECTION PROCESS
3.1 Experimental setup
Experiments have been performed in our laboratory. �e targeted
board is an STM32VLDISCOVERY board with an STM32F100RB
chip, embedding an ARM Cortex-M3 core running at 24MHz (41.7ns
period).

Fault injection is performed with a signal forming chain con-
sisting in a Keysight 33509B pulse generator, a Keysight 81160A
signal generator and a Milmega 80RF1000-175 power ampli�er. �e
created powerful signal is connected to a Langer RF probe RF B
0.3-3 located on the targeted chip.

In order to launch a fault injection, a synchronization signal (a
trigger) is sent by the targeted chip General-Purpose Input/Output
(GPIO) (controlled from the code) directly to the 33509B pulse
generator. �is experimental trick, possible when the a�acker has
control of the code (i.e. never but for vulnerability assessment) is
not mandatory. Other synchronization possibilities include sni�ng
communications with the target or measuring its EM emissions to
�nd a relevant pa�ern.

�e location of the probe on the chip was chosen a�er a scan that
determined the most sensitive area on the chip. �e same location
was kept for all experiments.

Synchronization is the main experimental di�culty with our
target. An irreducible latency of 600ns is added by our fault injection
platform between the input trigger and the EM pulse.

�e Sparkbench [12] so�ware was used for the fault injection
(open source, MIT license, see in reference). It is in charge of
controlling the apparatus, orchestrating the commands to the target,
retrieving the results and processing them. It includes a way to
reset the target upon a crash and more generally to deal with errors
that occur during a fault injection campaign.

3.2 Instrumentation
�e targeted chip is compatible with OpenOCD [1], a tool that
allows a debug access to the chip through a JTAG interface. In par-
ticular, it is possible to set breakpoints (the chip halts if a particular
memory address is about to be executed), and to arbitrarily read in
memory.

�is tool was used to infer the behaviour of the chip upon a fault.
Unfortunately, only partial information is available to us, there is
no way to trace all previously executed instructions to the best of
our knowledge.

When temporally scanning the chip (the injection timing sweeps
over a prede�ned range) crashes occur frequently. OpenOCD al-
lowed us to verify that these crashes were always explainable by
so�ware modi�cations e.g. reading in memory outside of the RAM
boundary (invalid address) or jumping to an address not corre-
sponding to a valid program.

Let’s shock our IoT’s heart: ARMv7-M under (fault) a�acks ARES’18, September 2018, Hamburg, GER

Sparkbench was con�gured to issue a report upon a crash. �is
report include the timing of the crash, the Stack Pointer (SP), and
the Program Counter (PC) causing the so�ware fault (in the ARM
hard fault meaning). It was used to get a feedback on the memory
location of the fault, but approximately, since the so�ware fault
o�en occurs a�er the hardware one. E.g. if the stack is corrupted
by a fault injection (hardware fault), the program may still run
for a few instructions before reaching a point where the corrupted
stack provokes an incorrect value to be loaded into the PC (so�ware
fault).

3.3 Unobservability of the fault model
�e e�ect of a fault on the chip is of critical importance both for
the a�acker and for the defender, it is the so-called fault model. A
detailed fault model as been proposed for our targeted chip in [13].
Moro et al. explain that timing based fault injection (EMFI included)
is able to modify the instruction fetched. If the new instruction
has no side e�ect, a virtual nop (No-operation, an instruction that
does nothing) is obtained that cannot easily be di�erentiated with
a true nop. If the new instruction has side e�ects, the result can be
unpredictable.

It is important to notice that to establish this fault model, the
observability di�culties are balanced by the controllability. I.e.
since it is not possible to observe in details what is happening at
the micro-architecture level, the authors carefully put the chip in
the desired state (e.g. using nops to have an empty pipeline) to
retroactively deduce the fault mechanism.

To our knowledge there is no be�er way to establish a detailed
fault model on this chip. In particular it is not possible to know what
instructions have really been executed upon a fault (execution traces
are branch traces only). Yet it is also unsatisfying: what guarantee
is there that another undocumented behaviour is exhibited if the
chip is in another state (behaviour already proved in [8])?

�e evaluator is le� with a choice: either force the chip state to
explain some of the fault mechanisms or do not alter the chip state,
allowing all faulty behaviours, but leaving her unable to explain
the fault mechanism.

If most previous works chose the �rst path [9, 13, 15], here the
second one has been taken. As seen in section 4.2, complex be-
haviours did arise. Yet as unsatisfying as it is, it becomes impossible
to explain precisely some fault mechanisms since we cannot trade
controllability for observability.

In this paper, the details of the fault mechanism leading to the
observed behaviour is not explained since it is impossible without
altering the targeted so�ware. Which, in the end, is an explication
of the fault mechanism for another target program. �e reader is
referred to [13], for a plausible fault model for this exact same
chip.

4 FAULT ATTACKS
In this section, we will demonstrate how to create vulnerabilities in
a sound codebase with fault injection. Several use-cases have been
experimentally implemented to illustrate the kind of vulnerabilities
it is possible to achieve with fault a�acks on real-world devices.
Each scenario is based on well-known a�acks scheme, and fault
injection is a mean to activate a vulnerability.

4.1 Control�ow hijacking
4.1.1 Description. �e control �ow hijacking consists in forcing

a program to follow a branch that it should normally not. A real
world usage of this a�ack is a PIN code validation, if the given PIN
is false, access should not be granted, ie. �rst condition is incorrect.

Listing 1: Targeted C code
if(correct == 1) {

status = 0xFFFFFFFF; }
else {

status = 0x55555555; }

Listing 2: Resulting assembly (thumb2)
cmp r3, #1 ; r3 contains *correct*
ite eq ; if then else
moveq.w r4, #4294967295 ; 0xffffffff
movne.w r4, #1431655765 ; 0x55555555

From the C code on listing 1, the normal behaviour is for status
to be equal to 0xFFFFFFFF a�er its execution. Our goal is to follow
the “else” branch instead (we detect status equal to 0x55555555
and correct still equal to 1).

Upon a correct fault, we reach an incoherent program state (that
should not be reachable).

4.1.2 A�ack results. To perform our a�ack, as in the other cases,
we insert a triggering method just before our area of interest. �e
search for the correct parameters is done semi-automatically: �rst
interesting parameters (that crash the target) are found for the
number of pulses, the pulses period, width, leading and trailing
edges duration, and the pulse amplitude. �en we scan the chip
with a XY stage to detect the most sensitive location. In front
of the number of parameter dimensions to explore, a part of the
work depends on the experience of the operator to �nd the correct
parameters.

In the end a set of parameters is found that trigger the expected
behaviour. �e signal sent to the EM probe is a train pulse with 15
pulses (period 3.1ns, width 1.6ns) with a −9dBm amplitude before
the ampli�er.

Faulty outputs (status=0x55555555) are observed for 10% of the
executions during ≈ 200ns (the timing of the fault injection varies),
or ≈ 5 instructions. Possible explanations are: several instructions
may be faulted and giving the same faulty behaviour, a fault may
be e�ective at di�erent stage of the pipeline for a same instruction.

As discussed in section 3.3, it is not possible to precisely explain
what is happening in the chip a�er a fault injection without altering
the target program (and in this case we explain the fault behaviour
for another program).

4.1.3 Consequences. �is very simple pa�ern shows that with
a fault a�ack, we may modify the control �ow of our program
dynamically, and even reach an incoherent state (that should not
be reachable). Actually this pa�ern is already taken into account in
the design of Verify PIN algorithms where fault a�acks have been,
rightly, considered a threat.

ARES’18, September 2018, Hamburg, GER Sebanjila Bukasa, Ronan Lashermes, Jean-Louis Lanet, and Axel Leqay

What this pa�ern reveals is that any branch in the code can
be hijacked, easily leading to the compromise of the system. All
branching must be protected or demonstrated innocuous.

4.2 Bu�er over�ow
4.2.1 Description. A bu�er over�ow is achieved when data is

wri�en outside the boundaries of the destination bu�er during
memory handling, leading to values wri�en to adjacent memory
locations. Here an a�acker which can only access some variables
can copy informations from internal unknown variables to readable
ones.

Considerable e�ort have been devoted to mitigate this class of
a�acks in the past. In this use-case, it is demonstrated that a bu�er
over�ow vulnerability can be created in a sound program with a
fault a�ack.

Two di�erent bu�er over�ows have been a�empted. In the �rst
a�ack (herea�er called BO1), the targeted value key is located close
to the bu�er wri�en to (text). In a second a�ack (BO2), the two
values are separated by a canary: a special bu�er that issues an
error if modi�ed. �e layout can be seen on listing 3.

Listing 3: Memory layout targeted by the bu�er over�ow
char text[n] ; // n=128 for BO1, n=8 for BO2
char canary[8] ; // BO2 only
unsigned char key[16] ;

�e targeted function is a strncpy that copy data from a big bu�er
called big text �lled with a distinctive pa�ern (01 02 03 04 ...)
to text with the correct size parameter n. Our objective is to modify
the key by disturbing the correct strncpy behaviour.

Listing 4: Assembly code for strncpy call
mov r2, r5 ; pass n as argument (in r2)
mov r0, r6 ; get destination (text) address (in r0)
ldr r1, [pc, #24] ; get source (big_text) address (in r1)
bl 8004770 <strncpy>; call strncpy procedure

As can be seen on listing 4, if the instruction loading the n argument
could be replaced by a nop, then the actual n value will depend on
the value of the r2 register at this call. If the new value is bigger
than the previous one, a bu�er over�ow becomes possible. But if
this new value is bigger than the source bu�er, our memory will
be �lled with zeros according to strncpy documentation. But fault
a�acks allow us to modify any instruction, so we can also try to
alter source or destination addresses.

4.2.2 A�ack results. First, we con�rm that preventing the proper
loading of the size limiting argument (n) does not work. A nop was
achieved, but the value stored in r2 was an address (0x2000xxxx)
and as speci�ed in the documentation n bytes are always wri�en to
the destination bu�er. First the source bu�er, then a null padding.
�e fault, in fact wiped out our RAM, triggering a crash (probably
by writing to unmapped addresses).

By methodically tuning the delay parameter in order to fault
successively various instructions, a faulty ciphertext was �nally
found. OpenOCD was used, as explained in section 3.2, to observe
the memory at the text and key locations. Figure 1 shows the result.

Figure 1: Memory observed with OpenOCD a�er a success-
ful fault injection. �e correct text address is 0x20000918,
the �rst 4 words are correct, resulting from a previous un-
faulted execution. �e key address is 0x20000a18.

It shows that n was not modi�ed. Instead, the destination address
was altered and the big text bu�er was wri�en at the wrong location
(16 bytes shi�). Finally, the key was overwri�en at the end of the
bu�er. A bu�er over�ow was achieved.

A bu�er over�ow is usually achieved by modifying the number
of bytes wri�en. Here the destination address is modi�ed. �is fact
motivated our second BO2 campaign, where a canary is present in
memory to detect bu�er over�ows. �is canary is manually imple-
mented in this case, but nowadays compilers are able to place them
automatically, o�en at stack frame boundaries. In our application,
if the canary is modi�ed, the key is erased to 0 which can easily be
detected by our platform.

�e BO2 campaign explored a big timing range to see what e�ect
could be achieved. �e most important point is that the key is not
used in any way by the targeted function (strncpy), only text which
is close in memory.

�e results show that the canary has been modi�ed in numerous
cases, thus the a�ack failed in these cases. But faulty results were
achieved nonetheless. Using OpenOCD, the key value was observed:
the �rst word was replaced by either 0x08000000 or 0x00008000
depending on the fault injection timing. �is is not the result of a
misplaced bu�er, but the exact cause of this error is still unknown.
It is reminded that the targeted code does not handle memory at the
key address, it cannot be explained by a fault at the decode stage
on a load instruction.

4.2.3 Consequences. Unlike pure-so�ware bu�er over�ows, it
is possible with hardware fault injection to modify the size of the
memory copy but also to alter the destination address. It has been
demonstrated that it can jump over a canary, a classic countermea-
sure against bu�er over�ows. Yet the EMFI does not allow a good
control on the fault e�ect.

4.3 Fault activated backdoor
4.3.1 Description. In this use-case, it is supposed that a malevo-

lent insider (with access to source code) tries to add a backdoor into
a cryptographic application. In order to not be detected by static
analysis tools, the backdoor payload cannot be accessed normally
by the code (no branch leads to the payload, it cannot be normally
executed). As dead code, it can be detected as such but it can also

Let’s shock our IoT’s heart: ARMv7-M under (fault) a�acks ARES’18, September 2018, Hamburg, GER

be hidden as data. Yet a precisely timed fault injection is able to
activate the payload.

�e backdoor is split in two parts: the payload copies the key
into the ciphertext bu�er. �e backdoor trigger (cf listing 5) is an
(almost) innocent looking code that can launch the payload upon a
fault injection.

Listing 5: Backdoor trigger
void blink_wait()
{
unsigned int wait_for = 3758874636;
unsigned int counter;
for(counter = 0; counter < wait_for; counter += 8000000);

}

�e backdoor trigger compiles to the assembly code show on
�gure 6 (only the end of the function is shown).

Listing 6: Backdoor trigger (assembly)
...

80005ca: bd80 pop {r7, pc}
80005cc: e00be00c .word 0xe00be00c

�is backdoor trigger lies in the fact that the ARMv7-M inter-
leaves data and code if a data too big to be embedded in an instruc-
tion is used. �us 3758874636 corresponds in fact, if executed, to
two instructions that jump to the backdoor: e00b e00c. A fault
instruction able to avoid the blink wait return instruction at ad-
dress 0x80005ca implies that the data at 0x80005cc is executed. A
covert backdoor trigger is obtained. In our program the backdoor
payload is in plain sight, but one could imagine sneakier ways to
hide it.

4.3.2 A�ack results. With an injection timing of 2.116µs , the
a�ack succeeded with a low success rate of 4%, in the other 96%
nothing happened and the result was correct.

�e value 00112233445566778899AABBCCDDEEFF (key value) is
observed as the ciphertext when the backdoor has been triggered.
To verify that the backdoor trigger was responsible for the backdoor
call, a hardware breakpoint was placed at address 0x80005cc which
is normally a data (and so never executed). As expected, on a
successful fault injection the breakpoint did halt the execution and
a “step” in debug mode did show a jump to the backdoor. �e
triggering path has been validated. Unfortunately, we have no way
to be sure that a nop is indeed responsible for the data execution at
0x80005cc.

But something else, strangely, did appear during the experiments.
At 2.268µs , a faulty value 279FB74A445566778899AABBCCDDEEFF
is observed (�rst word is correct ciphertext, the 3 other words corre-
spond to the key). To investigate, a breakpoint was placed at the end
of the backdoor payload. Indeed this breakpoint was reached. By
reading the memory at this point, part of the program path leading
to the backdoor payload was reconstructed. �e backdoor trigger
was not responsible but in a neighbouring part of the code, an ad-
dress corresponding to the middle of the backdoor was found in the
stack. A stack corruption leads to a jump to this location through

a pop {…, pc}. How this address ended up in the stack is still a
mystery (and unfortunately cannot be explained cf section 3.3).

4.3.3 Consequences. With this use-case it has been showed that
a backdoor may be hidden in an inert part of the memory. As
such, static analysis tools cannot detect this vulnerability with
information �ow analysis. �is vulnerability is a reminder of the
well known problem of executable data. Usual protection may
be e�cient in this case apart for the peculiarity of ARMv7-M to
interleave some data with executable code.

4.4 Return Oriented Programming
4.4.1 Description. In this use-case, a Return Oriented Program-

ming (ROP) exploit is demonstrated. From her knowledge of the
binary, an a�acker tailors her own program by imposing her con-
trol �ow graph on top of existing code. It becomes possible to take
full control of a targeted device, including execution of privileged
instructions. If the binary is big enough, code sections with a useful
behaviour will always be present. ROP allows to use these sections
and to chain them in a useful manner to achieve the desired be-
haviour and minimize side e�ects. �ese pieces of code are called
“gadgets”. �eir common particularity is that they include a useful
behaviour for an a�acker, and the sequence of instructions �nishes
by a return. �ere are two di�erent ways to “return” in ARMv7-M,
namely bx lr or pop {...,pc}, the �rst one takes into account the
Link Register (LR) whereas the second take values from the stack.
�e second class of return is the most practical in our case, because
with full control on the stack it is easier to pop from stack than
to assign a value to LR. �is a�ack is interesting for an a�acker
because it allows to use existent code to create a di�erent behaviour,
thus keeping static integrity.

Listing 7: Example of gadget (assembly)
800039c:bd04 pop {r2, r5}
800039e:46ae mov lr, r5
80003a0:bd00 pop {pc}

In listing 7 registers r2, r5 and lr are �lled with values from the
stack, then the last pop is a branch by �lling the PC register with
the next stack value.

If the a�acker is able to branch to a controlled part of the stack,
she can then use values that will call gadgets and then return to
the stack. �e challenge here is to gain control of the stack and �ll
it with the right values, to activate the ROP. As the a�acker only
manipulate addresses there are no modi�cations on the source code
itself. But she must know all exact addresses and necessary values
to �ll correctly the stack.

�e ROP goal is to copy the key value into the ciphertext bu�er
then to hand over to the normal control �ow (similar to the backdoor
scenario). So when reading the ciphertext a�er a successful fault
injection, the key is read instead.

4.4.2 A�ack results. Activating the ROP has some prerequisites.
First of all, the stack must be �lled with the ROP data (the branches
to gadgets) and the SP correctly positioned.

In our setup, the stack has been �lled at the current stack pointer
with the adequate values. In a real a�ack, this part may be tricky.

ARES’18, September 2018, Hamburg, GER Sebanjila Bukasa, Ronan Lashermes, Jean-Louis Lanet, and Axel Leqay

Listing 8: ROP activation (assembly)
80003dc b.n 80003ec <some_function>
80003de nop

...
080003e2 <first_gadget>:
80003e2 ldr r4, [pc, #4]; (80003e8)
80003e4 mov lr, r4
80003e6 pop {r0, r1, r2, pc}
80003e8 .word 0x0800039d

As our test application is not big enough, some gadgets where
missing. In particular, the �rst one has to be manually added: it
saves the LR required to return to the normal program �ow a�er the
a�ack. �en it sets the PC from a value in the a�acker controlled
stack to the next gadget.

�e ROP activation happens when the program �ow reach a
function preceding the �rst gadget in memory as shown in listing 8.
Instruction at 0x80003dc is skipped.

A NOP is present in listing 8 to illustrate a di�culty with fault in-
jection. As clearly explained in [13], the fetch stage always load 32-
bits of instruction (here corresponding to two instructions). Hence
a fault may alter two instructions simultaneously depending on
the alignment of the instructions, increasing the probability to get
a crash. Indeed in our �rst experiments, the alignment was not
correct and caused the fault to impact two instructions: the �rst
instruction of the �rst gadget was not properly executed.

�e ROP a�ack consists in �lling the proper data in registers
before calling memcpy to copy the key into the ciphertext bu�er.
Since our gadgets do not corresponds exactly to the desired program,
padding values are placed into the stack so that the values of interest
for the a�ack are properly located into the stack

�e last gadget is a return to normal execution. Finally, the a�ack
succeeded as the key was read in the ciphertext bu�er, with no
error on other functionalities.

4.4.3 Consequences. �is use-case demonstrates that the pre-
vious a�ack schemes may be leveraged into a fully �edge a�ack,
namely a ROP a�ack to execute an arbitrary payload designed by
the a�acker.

ROP is a real threat for devices as it allows to take full control of
a target by completely hijacking the control �ow.

�is technique is powerful on several account. First, the ROP
keeps the privilege the program has at the faulted instruction. It is a
practical opening for privilege escalation. �en the static integrity
is preserved before and a�er the a�ack. A forensic analysis cannot
reconstruct easily what happened (if the stack is cleared a�er the
a�ack).

5 CONCLUSION
With this work, the EMFI has been shown to be an e�ective vulner-
ability injection mechanism. It asks for a re-evaluation of classic
countermeasures against common so�ware vulnerability, as our
bu�er over�ow over a canary have shown.

�e precise micro-architectural e�ect of the fault injection should
be analysed in depth. For that, tooling must be developed to re-
construct the precise e�ect of the fault on real code. Indeed using

specially cra�ed code for that purpose, even if informative, prevents
from observing the whole range of e�ects seen on real code.

Tooling must also be designed to evaluate the fault vulnerability
of a program. It can help the system designer to detect the most
vulnerable parts of his system and act accordingly.

In this work, EMFI has been used on our own application. It
is far simpler than a real application in a IoT device for example.
�e e�ectiveness of this technique against commercial products
must be evaluated. EMFI is a threat, but is it as bad as we suspect?
Not necessarily, since the complexity of the system may make the
experiments more di�cult. In the end, the main limitations for
EMFI is of experimental nature, the a�acker has a low control on
the injected faults and the reproducibility may be low.

�ere are many possible countermeasures against EMFI (for-
mally proven applications, secure elements, increased experimental
di�culty, control �ow integrity, etc).

In the future, at least one of the core would have to be hardened,
probably with an e�cient Control Flow Integrity (CFI) & System
Integrity (SI) mechanism, to face EMFI threat.

REFERENCES
[1] 2017. OpenOCD. (2017). h�p://openocd.org Last accessed on July, 5th, 2017.
[2] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi. 2010. Low

voltage fault a�acks to AES. In 2010 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST). 7–12. DOI:h�p://dx.doi.org/10.1109/HST.
2010.5513121

[3] S. Bhasin, N. Selmane, S. Guilley, and J. L. Danger. 2009. Security evaluation of
di�erent AES implementations against practical setup time violation a�acks in
FPGAs. In 2009 IEEE International Workshop on Hardware-Oriented Security and
Trust. 15–21. DOI:h�p://dx.doi.org/10.1109/HST.2009.5225057

[4] Eli Biham and Adi Shamir. 1997. Di�erential fault analysis of secret key cryp-
tosystems. Springer Berlin Heidelberg, Berlin, Heidelberg, 513–525. DOI:
h�p://dx.doi.org/10.1007/BFb0052259

[5] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. 1997. On the Importance
of Checking Cryptographic Protocols for Faults. Springer Berlin Heidelberg, Berlin,
Heidelberg, 37–51. DOI:h�p://dx.doi.org/10.1007/3-540-69053-0 4

[6] H. Le Bouder, G. �omas, Y. Linge, and A. Tria. 2014. On Fault Injections in
Generalized Feistel Networks. In 2014 Workshop on Fault Diagnosis and Tolerance
in Cryptography. 83–93. DOI:h�p://dx.doi.org/10.1109/FDTC.2014.18

[7] A. Dehbaoui, J. M. Dutertre, B. Robisson, and A. Tria. 2012. Electromagnetic
Transient Faults Injection on a Hardware and a So�ware Implementations of
AES. In 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography. 7–15.
DOI:h�p://dx.doi.org/10.1109/FDTC.2012.15

[8] Christopher Domas. 2017. Breaking the x86 ISA. In BlackHat 2017.
[9] Louis Dureuil, Marie-Laure Potet, Philippe de Choudens, Cécile Dumas, and

Jessy Clédière. 2016. From Code Review to Fault Injection A�acks: Filling the Gap
Using Fault Model Inference. Springer International Publishing, Cham, 107–124.
DOI:h�p://dx.doi.org/10.1007/978-3-319-31271-2 7

[10] D. H. Habing. 1965. �e Use of Lasers to Simulate Radiation-Induced Transients
in Semiconductor Devices and Circuits. IEEE Transactions on Nuclear Science 12,
5 (Oct 1965), 91–100. DOI:h�p://dx.doi.org/10.1109/TNS.1965.4323904

[11] M. S. Kelly, K. Mayes, and J. F. Walker. 2017. Characterising a CPU fault a�ack
model via run-time data analysis. In 2017 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). 79–84. DOI:h�p://dx.doi.org/10.
1109/HST.2017.7951802

[12] Ronan Lashermes. 2017. Sparkbench. (2017). h�ps://gitlab.com/Artefaritaj/
Sparkbench

[13] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz. 2013. Elec-
tromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller.
In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography. 77–88. DOI:
h�p://dx.doi.org/10.1109/FDTC.2013.9

[14] N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, and E. Encrenaz. 2014.
Experimental evaluation of two so�ware countermeasures against fault a�acks.
In 2014 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST). 112–117. DOI:h�p://dx.doi.org/10.1109/HST.2014.6855580

[15] L. Rivière, Z. Najm, P. Rauzy, J. L. Danger, J. Bringer, and L. Sauvage. 2015. High
precision fault injections on the instruction cache of ARMv7-M architectures.
In 2015 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST). 62–67. DOI:h�p://dx.doi.org/10.1109/HST.2015.7140238

http://openocd.org
http://dx.doi.org/10.1109/HST.2010.5513121
http://dx.doi.org/10.1109/HST.2010.5513121
http://dx.doi.org/10.1109/HST.2009.5225057
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1109/FDTC.2014.18
http://dx.doi.org/10.1109/FDTC.2012.15
http://dx.doi.org/10.1007/978-3-319-31271-2_7
http://dx.doi.org/10.1109/TNS.1965.4323904
http://dx.doi.org/10.1109/HST.2017.7951802
http://dx.doi.org/10.1109/HST.2017.7951802
https://gitlab.com/Artefaritaj/Sparkbench
https://gitlab.com/Artefaritaj/Sparkbench
http://dx.doi.org/10.1109/FDTC.2013.9
http://dx.doi.org/10.1109/HST.2014.6855580
http://dx.doi.org/10.1109/HST.2015.7140238

	Abstract
	1 Introduction
	2 Previous works
	3 Fault injection process
	3.1 Experimental setup
	3.2 Instrumentation
	3.3 Unobservability of the fault model

	4 Fault attacks
	4.1 Controlflow hijacking
	4.2 Buffer overflow
	4.3 Fault activated backdoor
	4.4 Return Oriented Programming

	5 Conclusion
	References

