
Microarchitecture security,
future-proof designs

Habilitation à diriger des recherches
Université de Rennes

Ronan Lashermes

Jury Members:

Reviewers:
• David Hély, Grenoble INP Esisar
• Nele Mentens, Leiden University & KU Leuven
• Tamara Rezk, Inria

Examiners:
• Régis Leveugle, Grenoble INP Phelma
• Isabelle Puaut, Université de Rennes
• Arnaud Tisserand, CNRS

Acknowledgment
I would like to express my deepest gratitude to those who have supported me throughout this
journey.

First and foremost, my heartfelt thanks go to Hélène and Gaston, my dearest loves, whose
unwavering support and encouragement have been invaluable.

I extend my appreciation to Guillaume Bouffard and Hélène Le Bouder for their meticu-
lous proofreading and insightful feedback, which significantly contributed to improving this
manuscript.

I am also grateful to my reviewers, David Hély, Nele Metens, and Tamara Rezk, as well
as my examiners, Régis Leveugle, Isabelle Puaut, and Arnaud Tisserand, for their time and
invaluable expertise in evaluating my work.

A special thanks to my colleagues at LHS, Michel Hurfin, Ludovic Mé, and Alexandre
Sanchez, for their collaboration and support. I also acknowledge Patrick Gros and Éric Poiseau
from Inria for enabling the financial support for the defence.

I sincerely thank my collaborators from various projects: Joseph Paturel, Simon Rokicki,
and Olivier Sentieys (TARAN); Damien Hardy, Erven Rohou, and Thomas Rubiano (PACAP);
and Damien Marion (CAPSULE). Your contributions have been instrumental in shaping this
research.

My gratitude extends to my PhD students, Hery Andrianatrehina, Kevin Bukasa, Mathieu
Escouteloup, and Amélie Marotta, for the stimulating discussions and shared experiences.

To my friends, Azura, Bichette, Garagnas, Jag, Padmoumou, Rems, Theudeux, Titoon,
and Will, thank you for your support, laughter, and companionship.

Lastly, a special mention to my beloved pets, Dune, Mariette, Pixel, and Soupir, who have
provided comfort.

License Attribution 4.0 International (CC BY 4.0).
This document uses a latex style derivative of Legrand orange book.
Banner image of an experiment at the LHS taken by C. Morel.
April 11, 2025 edition

https://creativecommons.org/licenses/by/4.0/
https://www.latextemplates.com/template/legrand-orange-book

Contents

List of Figures . 8
List of Tables . 9
List of Listings . 10
Foreword . 11

I Introduction and Prerequisites

1 General Introduction . 13
1.1 What is this document? . 13
1.2 Who am I? . 14

2 Modern Cores . 15
2.1 Instruction Set Architectures . 15
2.1.1 What is an Instruction Set Architecture? . 15
2.1.2 Zooming In on RISC-V . 15
2.2 Microarchitecture . 16
2.2.1 In-order Microarchitectures . 17
2.2.2 Out-of-order Microarchitectures . 18

3 Security Definitions . 20
3.1 Physical Attacks and Microarchitectural Attacks . 20
3.2 Hardware Threat Models . 20
3.2.1 Remote Security on Application Processors . 20
3.2.2 Physical Security on Microcontrollers . 21
3.2.3 Threat Model Justification . 21
3.3 Confidentiality: What Should Be Secret? . 21
3.4 Integrity and Resilience in the Microarchitecture . 22

4 Security Beyond the Microarchitecture . 23
4.1 System-on-Chips . 23

3

4.2 The Responsibility of Security . 24
4.2.1 Limitations to the Secure Boot Threat Model . 24
4.2.2 The Threat Model Might Not Be The One Marketed . 24
4.2.3 The Sociology of Security in the Design Process . 25

II Improving Security in Today’s Cores

5 Using Timing Measurements to Exfiltrate Information 29
5.1 Covert and Side Channels . 29
5.1.1 Support for Covert and Side Channels . 30
5.1.2 Timing Threat Models . 30
5.2 Architectural Timing Channels . 31
5.2.1 Presenting Architectural Timing Channels . 31
5.2.2 Current Solutions Against Architectural Timing Channels . 31

6 Preventing Microarchitectural Timing Covert and Side Channels . 34
6.1 Microarchitectural Covert Channels . 34
6.1.1 Case Study: Using the BHT as a Covert Channel . 34
6.1.2 Microarchitectural Elements Likely to Create a Covert Channel 36
6.2 Countermeasures to Microarchitectural Timing Covert Channels 37
6.2.1 Leveraging Existing Architectural Security Boundaries . 37
6.2.2 Timing Fences . 39
6.2.3 Domes . 39
6.2.4 fence.time as an Official RISC-V Extension in Development 41
6.2.5 Conclusion on Countermeasures Against Covert Channels . 43

7 The Dangers of Speculation . 44
7.1 Microarchitectural Data Sampling . 44
7.2 Meltdown and its Variants . 45
7.3 A Presentation of Spectre Attacks . 46
7.3.1 Basic Principle . 46
7.3.2 Microarchitectural Breakdown . 46
7.3.3 Exploits . 47
7.3.4 Variants . 47
7.4 Other Transient Attacks . 48

8 Dealing with Transient Attacks . 49
8.1 Current Solutions in AMD, ARM, and Intel Microarchitectures 49
8.1.1 Intel . 49
8.1.2 AMD . 50
8.1.3 Arm . 50
8.2 Propositions from the Academic Literature . 51
8.2.1 Invisible Speculation: Reverting Mispeculated State . 51
8.2.2 Selective Speculation: Delaying Risky Speculation . 51
8.2.3 Protecting Secure Enclaves . 53
8.2.4 The Use of Formal Methods . 53

8.3 Compiler-Based Solutions . 53
8.3.1 Retpoline . 53
8.3.2 Speculative Load Hardening (SLH) . 54
8.3.3 Bounds Clipping . 55
8.4 Speculation Barriers for RISC-V . 55
8.4.1 Fences Semantics . 56
8.4.2 Placement Policies . 57
8.4.3 Hardware implementations . 58
8.4.4 Our results . 59
8.4.5 Concluding on Speculation Barriers and Spectre Countermeasures 63

9 Concluding on Microarchitectural Attacks . 64

III Radical New Core Designs for Security

10 Architectural Secret Values . 67
10.1 The Semantics of Architectural Secret Values . 67
10.1.1 Hardware Confidential Registers . 67
10.1.2 Imagining the Workflow . 68
10.2 Dynamic Tracking of Architectural Secrets in Memory 69
10.2.1 Issues with Current Mechanisms . 69
10.2.2 Inline Memory Encryption . 69
10.3 Limitation: Against Hardware Secrets . 70
10.4 Conclusion . 71

11 Forbidding Forward Indirect Jumps . 72
11.1 Forward and Backward Indirect Jumps . 73
11.1.1 Use Cases of Indirect Jumps . 73
11.2 The Case for Forbidding Forward Indirect Jumps . 73
11.2.1 Indirect Jumps to Statically Unknown Destinations . 74
11.2.2 Dispatch Gadgets Are Inefficient . 75
11.2.3 A Dedicated Dispatch Instruction . 76
11.2.4 Considerations on the Hardware Implementation of Dispatch 76
11.2.5 Backward Indirect Jumps Are Necessary for Efficient Designs 77
11.3 Stronger Security Guarantees for Backward Indirect Jumps 77
11.4 Forward Indirect Jumps as a Security Boundary . 77
11.5 Compiler Support . 78
11.6 Other Implications . 78

12 Instruction Set Randomization for Execution Integrity 79
12.1 Lockstep Processors . 79
12.1.1 General Working Principle . 79
12.1.2 Security . 79
12.1.3 Economics . 79
12.1.4 Limitations . 80

12.2 Instruction Set Randomization . 80
12.2.1 Working Principle . 81
12.2.2 Forward Indirect Jumps . 82
12.2.3 (Micro)Architectural State Integrity . 82
12.2.4 Data Integrity . 83
12.2.5 Results from Instruction Set Randomization Techniques . 83
12.3 The Application Lifecycle . 83
12.4 The Limits of Control-Flow Integrity . 84
12.5 Conclusion . 85

13 Security Validation in Hardware . 88
13.1 Fetch and Decode . 88
13.1.1 Dedicated Buffer . 89
13.1.2 Optimised Primitives . 89
13.1.3 Integrity Tags . 89
13.2 Security Validation is Speculative . 90

14 Concluding on Radical Designs . 92

IV Conclusion

15 Conclusion . 94
15.1 Reflecting on Past Works . 94
15.2 Future-Proof Designs . 94
15.3 Perspectives: How to Get There? . 95

Annexes

Bibliography . 98
Articles . 98
Livres . 107
Autre . 107

Acronyms . 110

Glossary . 113

List of Figures

2.1 The encoding of the add (addition) instruction. rs1 , rs2 , rd encode the corresponding
register numbers on 5 bits (since 25 = 32). 16
2.2 Diagram of a typical RISC-V 5-stage in-order pipeline. $ is the short name for a cache memory
($ = cash). 17
2.3 Diagram of an out-of-order pipeline. 18

5.1 Covert and side channels are illegitimate communication channels between a sender, called the
Trojan, and a receiver, called the Spy. 29
5.2 Simple Power Analysis against RSA’s Square and Multiply algorithm (From Jonathan Amatu,
Maël Leproust, Salim Sama Mola et Alexis Prou work at IMT-Atlantique) 30

6.1 The BHT states at initialisation and after the message emission by the Trojan. 35
6.2 The timing matrix on the Aubrac core, highlighting the presence of a covert channel on the
BHT. From [20]. 35
6.3 The lifecycle of all resources. 40
6.4 Resource allocation process. 40
6.5 The Aubrac core is a classic 5-stage in-order core[20]. 41
6.6 The Salers core is an SMT in-order core with two harts, enabling tests on the limits of safe
resource sharing[20]. 41
6.7 The channel matrix of an unprotected BTB. 42

7.1 The microarchitectural state when executing a Spectre gadget. Colours represent the different
pipeline stages. The hashed-out area indicates speculated and uncommitted instructions. 47

8.1 Instruction mixes for all benchmarks for the none-execute configuration. 59
8.2 The number and proportions of Spectre gadgets categorised by their misspeculation sources
per configuration. 60
8.3 Plotting the security/performance trade-off. Security is the ratio to the none-execute gadget
count, performance is the ratio to the none-execute geomean trace duration. The corresponding
raw data is shown in Table 8.2. 61

10.1 The XTS-AES scheme:. The complete key is split into two 128-bit parts, k1 and k2, used by
the two AES ciphers Ek1 and Ek2. A “location-dependent” intermediate value is computed from a
random initialisation vector IV , the address of the data to encrypt, and a constant a in GF(2128). 70

12.1 Generic DCLS processor scheme. 80

7

12.2 The fetch stage must be modified to decode (ISR decode, not microarchitectural decode)
instructions on-the-fly using the ISR scheme. Only the 1-predecessor circuitry is shown. 82
12.3 The pseudo-source code for the CFG example in Figure 12.4. 85
12.4 A CFG example. 85

13.1 Adding a fetch buffer (in red) to the ISR scheme from Figure 12.2. 89
13.2 Highlighting in red the primitives to optimise. 89
13.3 A tag checker component, in conjunction with a tag bit counter in the ROB, accumulates tag
bits up to a predefined security level. 90
13.4 Each instruction can be executed multiple times to ensure that the computation remains
fault-free. 91

List of Tables

8.1 Timeline of Spectre countermeasure papers (2018-2023). 51
8.2 List of evaluated policies and results . 62

9

List of Listings

5.1 A function that compares two byte arrays. The function returns as soon as
it detects a mismatch. This behaviour leaks information through timing side
channels, revealing which digit is incorrect. 31

5.2 A function that compares two byte arrays in constant time. 32
5.3 Conditional selection: if rc is zero, then rd ← rs1 ; otherwise, rd ← rs2 . . 32
7.1 C code for the Meltdown attack. 45
7.2 C code for the Spectre-PHT attack. 46
8.1 Assembly code for the Retpoline countermeasure, a gadget that replaces an

indirect jump. 53
8.2 Pseudocode for Address-Based speculative load hardening (SLH). 54
8.3 Variant for Value Hardening. 55
11.1 Indirect jumps for calling and returning from a procedure. 73
11.2 Illustration of vtable usage in C++. 74
11.3 An inefficient dispatch gadget that avoids indirect jumps. 76
12.1 Pseudo-assembly code for a small SUBLEQ virtual machine (VM), from [26]. . 86

10

11

Foreword
This document is my “Habilitation à Diriger des Recherches (HDR)” thesis. The constraints
on the form and substance of an HDR manuscript are much looser than those for a master’s
or PhD thesis. In this thesis, I aim to describe coherent design schemes for hardened cores
suited to various threat models. I take this opportunity to step back from the hyper-focused
work typically undertaken for the purpose of publishing scientific papers. I intend to evaluate
certain design choices, considering not only their technical merits in terms of performance and
security, but also other aspects: does it contribute to the system’s complexity? Is it easy for
users to understand and reason about? Is there a likelihood that the ecosystem will adopt it?
…
Some of the ideas discussed in this document are not new and are cited accordingly. The works
to which I have contributed are explicitly referenced with the corresponding citation enclosed
in a red frame, as illustrated in the example below.

“Under the Dome: Preventing Hardware Timing Information Leakage” Math-
ieu Escouteloup, Ronan Lashermes, Jacques Fournier, and Jean-Louis Lanet. Smart
Card Research and Advanced Applications - 20th International Conference,
CARDIS 2021 [20]

In the digital version, you can click on the icon to download the corresponding paper.

In this document, instructions and registers are formatted in a specific way to facili-
tate the identification of the discussed elements. For example, add rd, rs1, rs2 is an
instruction that uses 3 registers.

https://academiccareermaps.org/glossary/habilitation-a-diriger-des-recherches-hdr
https://ronan.lashermes.0nline.fr/papers/CARDIS2021.pdf

I Introduction and
Prerequisites

1 General Introduction 13
1.1 What is this document? 13
1.2 Who am I? . 14

2 Modern Cores . 15
2.1 Instruction Set Architectures 15
2.2 Microarchitecture . 16

3 Security Definitions 20
3.1 Physical Attacks and Microarchitectural Attacks . . 20
3.2 Hardware Threat Models 20
3.3 Confidentiality: What Should Be Secret? 21
3.4 Integrity and Resilience in the Microarchitecture . . 22

4 Security Beyond the Microarchitecture. 23
4.1 System-on-Chips . 23
4.2 The Responsibility of Security 24

12

1. General Introduction

1.1 What is this document?
This document is my manuscript prepared to obtain my habilitation à diriger des recherches
(HDR) diploma, a French qualification that follows a PhD and grants the ability to indepen-
dently supervise PhD students.

In this manuscript, I focus on the Design of secure microarchitectures. Unlike the more
traditional technical academic work that I usually do, I aim to take a step back and analyse
security solutions, whether developed by myself or others, from a system designer’s point of
view. Indeed, the design process is influenced by a multitude of factors, not only scientific and
technical constraints but also social considerations. Security solutions are not always adopted
based solely on their technical superiority but often because they enable social constructs that
would otherwise be unfeasible (for instance, the ability to distrust the company that develops
an OS, the ability to distrust the user, …). The most effective design is not necessarily the
most technically advanced, especially if its complexity hinders widespread adoption. Conversely,
some design decisions are primarily driven by a company’s market strategy and do not improve
the system’s security as advertised.

This type of discussion is usually not the place of academic papers on hardware security,
and it is a direction I aim to address in this document. I develop and explore mental models
for various security features, examining how they interact and influence each other. While the
primary focus is on hardware security, effective design cannot occur in isolation. We must
also consider instruction set architecture (ISA) design, the roles of compilers, programming
languages, and more. I try not to delve into excessive technical details; the referenced papers
do so more effectively.

To guide the discussion, I present two design scenarios. In Part II, concepts for enhancing
the security of a typical modern application processor are explored. The challenge here is
to propose solutions that are compatible with current microarchitectures, requiring minimal
modifications. For the sake of realism, I exclude physical attacks from the scope of this section.

In contrast, in Part III, I adopt a more radical approach. How could we design a microar-
chitecture with enhanced security from scratch? To avoid redundancy, I consider a different
threat model, focusing on secure microcontrollers that must withstand physical attacks.

I hope you find this manuscript engaging and thought-provoking. If I succeed in making
you pause and reconsider why certain systems are designed the way they are, whether for
security or non-technical reasons, I consider my objective accomplished.

13

1.2 Who am I? 14

1.2 Who am I?
I am Ronan Lashermes, currently working at Inria as a research engineer. I obtained my
PhD from the CEA and UVSQ in 2014, where I focused on the implementation security of
pairings, a public cryptographic primitive. During this period, I developed my expertise in
physical attacks, particularly fault injection, against cryptographic implementations. I worked
as a research engineer (permanent position) at Secure-IC, a hardware security company, before
joining Inria in 2016, initially as a postdoc and later as a research engineer.

At Inria, I developed the physical attack benches for the High Security Laboratory (LHS),
focusing on electromagnetic (EM) fault injection and EM leakage characterisation. Early on, I
was among those who advocated for viewing physical attacks as a generic attack vector against
entire systems, not just against cryptographic implementations. When the Spectre attacks (cf
section 7.3) were published in 2018, they seemed like a natural and powerful extension of the
capabilities of physical attacks.

Today, I specialise in physical attacks and microarchitecture security. Whether from physi-
cal attackers or simple logic attackers, there are still numerous ways to compromise the security
of modern systems. Enhancing security is not solely a technical challenge, which is why I vol-
unteered as the Microarchitecture Side Channels SIG Chair of the RISC-V Foundation to lead
efforts in hardening microarchitecture against these threats.

During my time at Inria, I advised or supervised 4 PhD students, 2 of whom have defended
their theses: Kevin Bukasa and Mathieu Escouteloup, while 2 are still ongoing: Amélie Marotta
and Hery Andrianatrehina. Kevin and Amélie focused on fault attacks, whereas Mathieu and
Hery worked on microarchitecture security. To narrow the scope of this document, I do not
discuss my work on physical attacks, except occasionally to justify specific threat models.

https://inria.fr/en

2. Modern Cores

In this document, we see how RISC-V cores are designed for security. But before reaching that
point, I must introduce how a core capable of executing generic software typically works.

2.1 Instruction Set Architectures
2.1.1 What is an Instruction Set Architecture?

At the core of software abstraction are instructions. All software, when compiled, is reduced
to a sequence of these elementary operations.

Instructions, and how they should be used, are defined by the instruction set architecture
(ISA). The ISA establishes the standard that defines the interface between software (composed
of instructions) and hardware (the logic circuits that implement these operations).

Today, two major ISAs dominate the landscape: x86, developed by Intel and AMD, primar-
ily for laptops, desktops, and servers; and ARM, designed by Arm, Apple, Qualcomm, …, with
various implementations for embedded processors, microcontrollers, and increasingly, laptop
and server processors. These ISAs are commercially developed and require licensing fees for
companies wishing to implement a core based on them.

A new contender ISA, known as RISC-V, is gradually gaining traction [104]. RISC-V has
a significant advantage in that it is an open standard, governed by a dedicated foundation.
Anyone can join, like the author of this document, and contribute to its development. While all
ISAs have unique features and differ in key areas, in this document, I focus exclusively on the
RISC-V ISA. It has become the preferred choice for hardware implementations in academic
research due to its vast open-source ecosystem, which includes software, hardware, and tooling,
allowing for experimentation independent of vendors.

2.1.2 Zooming In on RISC-V
The RISC-V specification [104] defines several “base” integer instruction sets, most notably
RV32I and RV64I, which support 32-bit (SXLEN= 32) and 64-bit (SXLEN= 64) variations of
the base instruction set.

2.1.2.1 Registers
The ISA first defines registers, which are 32 small memories, each 32-bit wide for RV32I and
64-bit for RV64I, named x0 , x1 , x2 , · · · , x31 . I use this formatting to denote a register.
For instance, x1 holds a 32-bit (or 64-bit for RV64I) value that can be read from or written
to by instructions. x0 is special: it is hardwired to zero and always returns 0 when read.

15

2.2 Microarchitecture 16

Certain registers are assigned specific roles for convenience. For example, x1 is typically
used as the return address, holding the address where execution should resume after a func-
tion call. Although this is merely a convention (x2 could be used instead), these conventions,
collectively referred to as the application binary interface (ABI), allow for performance opti-
misations. One such optimisation is the return stack buffer (RSB), a hardware feature that
speeds up jumps involving the return address stored in x1 .

2.1.2.2 Instructions
Instructions are represented as 32-bit machine codes that define the operation type, the source
and destination registers, and sometimes embed immediate values (literals). Most instructions
operate on registers. I use this formatting to denote an instruction.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 000 rd 0110011

Figure 2.1: The encoding of the add (addition) instruction. rs1 , rs2 , rd encode the
corresponding register numbers on 5 bits (since 25 = 32).

Exemple 2.1 - Instructions

add t0, sp, t1
load a0, 4(t0)
jal ra, func

This small example contains three instructions:
• add t0, sp, t1 adds the values in registers sp and t1 , and stores the result

in register t0 . The encoding of this instruction is shown in Figure 2.1, with sp
and t1 as the source registers rs1 and rs2 , and t0 as the destination register
rd .

• load a0, 4(t0) loads a value from main RAM, using the address obtained by
adding 4 to the value in register t0 , and stores it in register a0 .

• jal ra, func (jump and link) jumps to the address func and stores the return
address (the address of the next instruction) in register ra . The func address is
encoded directly in the instruction as an immediate value.

The base RV32I and RV64I instruction sets contain a limited number of instructions, but
there are many official RISC-V extensions that provide additional functionality. For instance,
the M extension introduces mul and div instructions for multiplication and division.

2.1.2.3 Other Features
The ISA also defines additional core behaviours, such as memory models that govern the be-
haviour of load and store instructions, control and status registers (CSRs) registers that
configure the core, and much more. The unprivileged specification [104] is an extensive docu-
ment, spanning 670 pages!

2.2 Microarchitecture
The microarchitecture is the implementation of the ISA, the elements in this latter specifi-
cation often referred to as the architecture.

2.2 Microarchitecture 17

Definition 2.1 - Architecture vs microarchitecture

The registers x0 , x1 , … defined by the ISA are known as architectural registers. A com-
mon hardware optimisation is to have more physical registers than the mandated archi-
tectural ones (cf subsection 2.2.2). These physical registers are dynamically assigned to
reduce inter-instruction dependencies. These physical registers are an implementation
detail; they are part of the microarchitecture. Architectural registers are mandated by
the ISA; they are part of the architecture.

The microarchitecture defines the core’s characteristics: different implementations can
offer widely varying performance, energy consumption, and security trade-offs. There are
many different types of microarchitectures, generally built around pipelines. A pipeline is a
series of processing stages where different instructions are handled concurrently, similar to
an assembly line in a factory, with each stage completing a part of the instruction. For
simplicity, they are usually divided into two categories: in-order microarchitectures and out-of-
order microarchitectures.

2.2.1 In-order Microarchitectures
An in-order core executes instructions strictly in the order they appear in the program. This de-
sign is typical of microcontrollers and energy-efficient application processors. A classic example
is the 5-stage pipeline described in Patterson and Hennessy’s book, Computer Organization
and Design [83], as shown in Figure 2.2.

Figure 2.2: Diagram of a typical RISC-V 5-stage in-order pipeline. $ is the short name for a
cache memory ($ = cash).

Each of the 5 stages has a distinct function, and at each clock cycle, multiple instructions
progress through different stages simultaneously.

1. Fetch: Instruction data is fetched from memory according to the current program
counter (PC) value.

2. Decode: The instruction is decoded, and the relevant information is propagated to other
components (e.g. the source registers are identified, and requests are sent to the register
file).

3. Execute: This is where the actual computation occurs (except for load and store).
For example, if an addition is being performed, the two source values are added. For
memory operations, this stage computes the address by adding the base register value
to the offset.

4. Memory: Memory access is performed for load and store instructions.
5. Write Back: The result is written back to the register file for use by subsequent instruc-

tions.
The register file is typically an SRAM memory with 2 read ports and 1 write port. Its

silicon area is often significant.

2.2 Microarchitecture 18

A performance bottleneck can arise if we have to wait for the write-back stage to complete
before reusing a register value. If two consecutive instructions have a dependence on the same
register, with one producing the value consumed by the second, several clock cycles may be
wasted. A common optimisation, known as value forwarding, introduces a data path that feeds
the output of the execute stage back into its input to avoid this delay.

2.2.2 Out-of-order Microarchitectures
Out-of-order microarchitectures trade simplicity (and hence energy efficiency) for higher perfor-
mance. Many instructions within a program are independent and can be executed out of order
or in parallel, as long as data dependencies are respected. Additionally, some dependencies are
merely false dependencies:

A: add t0, a0, a1
B: sub t1, t0, t2
C: add t0, a2, a3

In this example, it might seem that instruction C must wait for instruction B to complete
since they both use t0 . However, this is merely a naming dependency; instruction C does not
depend on the values computed by A or B. They are, in fact, independent.

Out-of-order microarchitectures address this by dynamically renaming registers. These
implementations use more physical registers than the architectural ones, and register renaming
occurs in a dedicated stage. Instructions are executed by reading from and writing to these
physical registers.

Figure 2.3: Diagram of an out-of-order pipeline.

The out-of-order pipeline, depicted in Figure 2.3, consists of an in-order front end, much
like the first stages of an in-order pipeline, followed by an out-of-order back end that executes
instructions in parallel and reorders them. Reordering is crucial to ensure correctness: if a
hardware error (e.g. division by zero) occurs, the system must recover to a valid architectural
state. If instructions after the erroneous one have already been executed, they must be can-
celled. This is one of the tasks of the reorder buffer. When an instruction is verified (and all
preceding ones are also verified), it can be committed to the architectural state of the core.

This reordering mechanism also facilitates speculative execution. Certain control flow
instructions (typically branches and indirect jumps) can take time to resolve. Rather than

2.2 Microarchitecture 19

waiting for these instructions to execute, the microarchitecture makes a prediction and contin-
ues executing from that point. If the prediction turns out to be correct, execution proceeds
smoothly; if not, the incorrect execution path is discarded.

3. Security Definitions

To discuss the security of microarchitectures, I must define security in our context: what should
be protected, and against whom? The main security properties for a system are confidentiality,
integrity, and availability (or resilience). These properties only make sense with respect to a
specific threat model, which is a conceptualisation of the attacker’s capabilities. The consid-
ered threat models are presented in section 3.2. The notion of confidentiality is explored in
section 3.3, and both integrity and resilience in section 3.4.

In this document, the attackers considered have low social capacities: I consider that the
attacker cannot reach physically a server in a data centre. This typically excludes state actors
from our threat models.

3.1 Physical Attacks and Microarchitectural Attacks
Two types of attacks are examined in this document.

Physical attacks exploit the fact that the targeted chip has a physical presence that an
attacker can interact with (cf. section 5.1). Physical attacks are typically categorised into two
subfamilies:

• Fault injection attacks involve perturbing the physical environment (e.g. power glitches,
clock glitches, EM fault injection, laser fault injection, …) to induce faults.

• Observation attacks (also called side-channel attacks) exploit information leakage
through physical quantities such as timing, power consumption, and EM emissions…

Microarchitectural attacks exploit vulnerabilities in the microarchitecture design to ex-
tract sensitive information (cf. section 6.1). In particular, transient attacks rely on the
speculative nature of modern processor cores to leak information through microarchitectural
behaviour. Microarchitectural attacks often use timing side channels as a means of extracting
data.

3.2 Hardware Threat Models
In this document, I reuse the two threat models typically considered when discussing the
hardware security of central processing units (CPUs).

3.2.1 Remote Security on Application Processors
In this scenario, an attacker:

• has no physical access to the target chip,

20

3.3 Confidentiality: What Should Be Secret? 21

• can usually execute their own program on the target (the privileges of this program may
vary depending on the scenario).

In particular, attackers are able to precisely measure the timing of operations in their
program. I consider remote physical attacks such as CLKSCREW [64] or Hertzbleed [68] out
of scope.

The target chip is a mobile, desktop or server-class CPU, meaning that it features
out-of-order execution and deep speculative execution, with an memory management unit
(MMU).

More specifically, in our case, I target an RVA23X64 RISC-V CPU (RVA23X64 is the
RISC-V profile name, with X = U or S).

3.2.2 Physical Security on Microcontrollers
In this second scenario, an attacker:

• has physical access to the target chip,
• and can therefore measure physical parameters (power consumption, photoemission, EM

emissions, …) during computation,
• can perform physical fault injection (clock glitches, power glitches, laser and EM fault

injection, …).
The target chip is a microcontroller, featuring in-order execution, without an MMU. It

may have advanced branch predictors, but associated speculation is shallow (the specula-
tion window is around the depth of the pipeline). More specifically, in our case, I target an
RVM23U32 RISC-V microcontroller.

3.2.3 Threat Model Justification
One may wonder why I consider only these two models. In particular, why am I not considering
physical attacks on application processors or transient execution attacks (which require deep
speculative execution) on microcontrollers?

Today, we are already having difficulties proposing efficient solutions for the two simpler
threat models. These models allow us to isolate the two main classes of issues we face today:

1. physical attacks,
2. microarchitectural attacks.
Fortunately, these two threat models make sense: our attacker has no access to servers

to perform physical attacks (low social capacity is assumed), and the microarchitecture of
microcontrollers is currently too simple to allow transient execution attacks.

However, some important use cases do not fit into these models:
• Mobile phones and laptops have application processors that may be accessed by an

attacker.
• Microcontrollers are evolving, featuring increasingly complex microarchitectures, and

deep speculative execution is not unimaginable in the coming years.

!
Beware: achieving good security for these use cases is currently out of reach,
and the possibility is not even being considered! The best that can be done
is to build a System-on-Chip (SoC) with both security-aware application pro-
cessors and hardened microcontrollers and execute applications on the correct
computation substrate (cf. section 4.1).

3.3 Confidentiality: What Should Be Secret?
One of the core functions of secure applications is to ensure confidentiality: some data must
remain secret from unauthorised entities. In order to build a threat model, we should ask

3.4 Integrity and Resilience in the Microarchitecture 22

ourselves what data must stay secret, and with respect to whom.
Here are examples of confidential data of various types:

• Monetary advantages: This can include information that may bias a competition (e.g.,
player positions in a video game competition) or where any bias may impact the monetary
gains of participants.

• Privacy-related data: This includes private information that may harm someone if
made public (e.g., medical information, personal address, bank account numbers, …).

• Industrial/State secrets: These are assets that provide a competitive advantage over
competitors: the secret recipe of a nearby restaurant, or the position of a state’s military
assets.

• Authentication tokens: Passwords and personal identification numbers (PINs) are re-
quired to authenticate oneself to a system. They are usually gates to unlocking some
functionality. In most cases, they should not be shared.

• Cryptographic keys: These are required to communicate confidentially with others.
They may be shared (in symmetric cryptography) with selected entities but must be
kept secret from others to prevent them from accessing the communication content.

The nature of a confidential asset is tied to different properties:
1. The severity of the asset (from secret defence to grandma’s cookie recipe).
2. The confidentiality lifetime, which is the duration for which confidentiality must be

maintained. This lifetime cannot realistically be infinite.
3. The data volume of the secret. This information is important since cryptographic

primitives are rated for a maximum data volume per key.
Thanks to encryption, the confidentiality of data can be reduced to the confidentiality of

cryptographic keys. To protect one company’s secrets, encrypt them. They then only need
to protect the cryptographic key, which is much smaller, and ensure the confidentiality of the
process when dealing with this data (e.g. decrypting and editing). This reduction property is
used to define a Root-of-Trust in section 4.1.

3.4 Integrity and Resilience in the Microarchitecture
Similarly, we want to prevent attackers from altering our data. Several kinds of integrity are
important:

• Data integrity: The attacker cannot alter data.
• Instruction integrity: The attacker must not modify the instructions that are executed.
• Control-flow integrity: The attacker must not be able to modify how instructions are

chained together.
• Architectural state integrity: The architectural configuration (privilege level, MMU con-

figuration, …) must not be altered.
• Microarchitectural state integrity: The microarchitectural state (branch prediction, cache

policy manager, …) must not be altered.
Execution integrity is the combination of Instruction, Control-Flow, Architectural, and

Microarchitectural integrities.
In addition to these integrity issues, we would like our chip to continue working normally

in the presence of naturally occurring faults, for example from cosmic radiation, while we
would like to erase secret data upon an active fault (e.g. from EM fault injection). Since it is
generally not possible to distinguish between the two cases, we want a resilient core that is not
only capable of detecting an integrity violation but also capable of remediating it. Resilient
microarchitectures are discussed in chapter 12.

4. Security Beyond the Microarchitecture

The security of the microarchitecture must align with its intended use. In this chapter, I present
how secure microarchitectures are used.

4.1 System-on-Chips
The processing circuit that implements the ISA is called a core, excluding peripherals, L2+
caches, etc. A core, whether in a microcontroller or an application processor, is typically
embedded in a broader system called a SoC. The SoC may include multiple cores, peripherals,
memory, and other components.

A large and complex system like a modern SoC presents a significant attack surface, often
coupled with non-resilient dynamic random-access memory (DRAM) memory, as discussed in
section 3.4.

We have seen in section 3.3 how ensuring the confidentiality of a large dataset is challenging,
leading to a strategy of encrypting the data and protecting the much smaller cryptographic
key.

Similarly, a potential approach to secure a SoC is to concentrate security features, such
as confidentiality and integrity, on a smaller part of the SoC. The hardware security module
(HSM) is the SoC component responsible for critical security services: it can store cryptographic
keys and perform cryptographic operations, like encryption, autonomously. This component
is typically responsible, during boot time, for verifying the boot image via a signature check
before execution. The boot image can then verify the next image, such as the operating system
(OS) image, and execute it, establishing a chain-of-trust (CoT). This process, called secure
boot, places the entire system’s security responsibility on the HSM; one must trust that the
HSM works correctly, but they only need to trust it. In this context, the HSM is known as the
root-of-trust (RoT).

One possible implementation of the HSM is a secure element (SE), a security-oriented
microcontroller similar to those used in secure smartcards. A SE should feature a dual-lockstep
microcontroller with hardware security hardening (e.g., attack sensors, component duplication,
memory encryption).

Sometimes, the trusted execution environment (TEE) handles the security role of the HSM.
TEEs, such as Arm’s TrustZone or Intel SGX, often execute secure applications on the same
core as unsecure ones but in a different execution context.

23

4.2 The Responsibility of Security 24

4.2 The Responsibility of Security
Security is a multifaceted concept, and system designers must make compromises with opposing
constraints. First and foremost, the device should ensure the security of the users: the
confidentiality of their data, the integrity of their applications, … However, we must recognise
other antagonistic goals. The device owner may want the possibility to recover data; for
example, when an employee leaves the company. Service providers (e.g. video and music
streaming services) may want to store assets on the device that must not be accessible to both
the owner and the user.

Ethics suggest that the loyalty of a device should go to the user [17, 77], while commercial
success often favours the device owner (assuming they are the buyer), and users want to use
the device to access data from service providers. Meanwhile, law enforcement would like to
have access to everything, when a device is recovered from a crime scene for example. These
opposing interests, which are ultimately a political struggle, have influenced the technical
architecture of modern SoCs. Not everyone was a fan. In his famous speech to the CCC, Cory
Doctorow [89] explicitly described the risks resulting from these conflicting interests. From
these arguments, the Linux community initially rejected the Secure Boot model relying on a
HSM that would allow the HSM provider to choose what can boot on the system.

In the rest of this section, the security model underlying the modern SoC organisation is
examined from this new perspective.

4.2.1 Limitations to the Secure Boot Threat Model
When discussing techniques to ensure data confidentiality, I emphasise that instead of trying
to guarantee that the entire system memory is tamper-resistant, one should encrypt the data
instead. Then, one only needs to ensure that the memory storing the cryptographic keys is
immune to attacks, resulting in a much smaller attack surface. This process is relevant only
for data at rest. If one needs to edit the data, it must be decrypted and modified in the clear.
Thus, a secure method, resilient to attacks, is needed to process confidential data.

Drawing a parallel with the CoT involved in secure boot, something remains missing in
this approach. The RoT may be immune and can guarantee that the boot image has not
been tampered with, but it is not a sufficient countermeasure against an attacker targeting
the hardware. While verifying and measuring the boot process and then comparing it to a
golden reference (a technique called measured boot) may increase confidence that no attack
has occurred, it is not foolproof. Even if measured boot is perfectly secure, an attacker can
still target any application or OS functionality to gain system control, for example through a
fault attack during execution [91].

Even if it complicates matters for the attacker, if secure boot can be bypassed through
fault injection [22], it remains an insufficient solution given the complexity of both hardware
and software in the secure boot mechanism. What is the cost of securing the Nintendo Switch
boot process compared to the cost of an attack demonstrated in [91]?

4.2.2 The Threat Model Might Not Be The One Marketed
A possible explanation is that modern SoC security architecture is not designed to protect
the user running the SoC against an attacker as the first objective; it is designed to allow
service providers to store confidential data within the SoC while distrusting most of the system,
including the users themselves. Service providers are not directly impacted if a user loses their
personal data to attackers, but they are much more concerned if they lose their own assets to
attackers (see for example the AACS encryption key controversy[105]). Consider the movie or
music industries as examples, where DRM keys are stored in the HSM.

4.2 The Responsibility of Security 25

Secure boot should be understood as a mechanism that primarily enables third parties to
distrust the user. We should recognise that the design process is driven by conflicting interests,
often resolved through commercial success as a form of evolutionary pressure. If one needs a
HSM to watch their favourite movies, they will buy the SoCs specified by the service provider.
An example is Windows 11’s requirement for TPM 2.0, a specific HSM improving security with
respect to previous generation TPM, rendering obsolete many otherwise functional laptops and
desktops.

A counter-argument is the attacks [22, 91] discussed earlier, which pose a real threat to
service provider assets. Indeed, I believe hardware attacks are often downplayed in threat
evaluations because these attacks have significant limitations.

1. They do not scale. A glitch attack against a Nintendo Switch provides access only to
that specific device[91].

2. Assets within the HSM remain secure. The DRM keys are usually safe; it is the media
on the compromised device that can be decrypted. This represents a loss for the service
provider but is preferable to exposing the keys publicly[105].

Despite these limitations, the poor track record of hardware security [91] underscores that it
should be taken more seriously.

4.2.3 The Sociology of Security in the Design Process
The technical and sociological aspects of design are always intertwined and must be recognised
as such. The merits of a particular solution should therefore be evaluated based on how well
it fits the intended use cases, in addition to its technical efficacy.

Exemple 4.1 - Good technical solutions may not be enough

The data integrity issue, caused by cosmic and radioactive radiation, highlights the
importance of social constructs in security design. It is not enough to devise a working
technical solution; it is also necessary to create the conditions for its widest possible
diffusion.
In [58], the authors analyse the fault rates of DRAM memory observed in data centre
servers over a period of 2.5 years. They observe the rate of correctable faults to be
2000− 6000 per GB per year, a significant value. These faults are correctable since
server-class DRAM memories typically feature error correcting code (ECC), a mechanism
that trades some memory space for data redundancy, allowing for recovery from isolated
bit flips due to radiation.
Interestingly, ECC is not featured in most desktop-class DRAM memories. Indeed, fault
resilience is used as a market discriminatory feature: only knowledgeable buyers are
supposed to care about this, and those buyers can pay more. ECC should be more
expensive for the same memory capacity because of the redundancy, but not at the
level seen commercially. This trend is slowly changing for the better, and now high-end
desktop-class CPUs from AMD and Intel can support ECC DRAM.
Remember, if naturally occurring radiation can corrupt data, an attacker can do so with
even greater precision.

The design features of a technical solution can influence its sociological impact and must
be considered accordingly. Following Donald Norman’s principles [82], good design has the
following properties:

1. Design your solution in a way that allows the user to create a mental model of it.
2. In the best case, this mental model already exists and is shared among your target

audience.
3. Make it hard to use it wrong, aka friction.

4.2 The Responsibility of Security 26

4. Make it easy to use it right.

Exemple 4.2 - unsafe Rust

A great example is the explicit goal of adding friction to undesirable constructs in
the Rust programming language. Typically, the unsafe keyword is used to bypass the
usual memory safety rules enforced by the language, sometimes necessary for interfacing
with libraries written in C. This is a dangerous feature that must be used sparingly.
As a common practice, crates (Rust’s term for libraries/packages) are often divided
into unsafe ones that interface with unsafe C libraries, typically named with a -sys
suffix. These unsafe crates are then wrapped within a safe crate, with an application
programming interface (API) leveraging all the safety features provided by Rust.

Based on these principles, the technical content of this document is organised into two
main parts, aimed at improving system security for users.

In Part II, I consider technical solutions that may fit today’s sociological security models.
With these techniques, there is no need to alter the organisational structure of entities produc-
ing the devices. These are incremental changes, following a “business as usual” approach.

In contrast, Part III explores more radical approaches that could shift the responsibilities of
stakeholders within the security ecosystem. For example, developers may now need to annotate
confidential variables (cf. chapter 10), or a new late phase of compilation, called installation,
must be performed in-situ on the device (cf. section 12.3). Such radical changes should be
recognised as such, immediately rendering these solutions unrealistic in the short term, even if
they are scientific achievements.

Many elements must align to achieve a secure system. In this document, I focus on the
cores themselves, leaving aside other critical components (RNG, secure memories, …).

Thesis In my view, the typical SoC design, focused around an HSM and application cores
with minimal security features, is not sustainable for the future as it fails to provide suffi-
cient protection against attackers, particularly those targeting hardware vulnerabilities. The
underlying reasons for these technical shortcomings often lie in non-technical influences on the
design process, where the ability to distrust external actors, while enhancing supply chain and
provisioning security, does not necessarily improve the security for the SoC user. Recognising
this “Chesterton’s fence”, we can embark on a blank slate redesign of the cores to obtain
future-proof designs for microarchitecture security.

II Improving Security
in Today’s Cores

5 Using Timing Measurements to Exfiltrate
Information . 29

5.1 Covert and Side Channels 29
5.2 Architectural Timing Channels 31

6 Preventing Microarchitectural Timing
Covert and Side Channels 34

6.1 Microarchitectural Covert Channels 34
6.2 Countermeasures to Microarchitectural Timing Covert

Channels . 37

7 The Dangers of Speculation 44
7.1 Microarchitectural Data Sampling 44
7.2 Meltdown and its Variants 45
7.3 A Presentation of Spectre Attacks 46
7.4 Other Transient Attacks 48

8 Dealing with Transient Attacks 49
8.1 Current Solutions in AMD, ARM, and Intel Microarchi-

tectures . 49
8.2 Propositions from the Academic Literature 51
8.3 Compiler-Based Solutions 53
8.4 Speculation Barriers for RISC-V 55

9 Concluding on Microarchitectural Attacks
64

27

28

As outlined in Part I, the security of modern microarchitectures requires significant im-
provement. Numerous attacks continue to be discovered, and mitigation measures are often
applied reactively. These mitigations frequently lack a principled approach. They aim to
prevent specific exploits while leaving underlying vulnerabilities exposed, which may still be
exploited through other means. This exemplifies suboptimal management of system security.

Several factors contribute to this challenge, one of the primary being that security is just
one among many competing design metrics. Furthermore, other security weaknesses are often
prioritised, with good reasons. For instance, memory safety was identified as the root cause
of 70% of vulnerabilities in 2019 [45]. However, gradual improvements are being made toward
memory safety with the adoption of better programming languages such as Rust, Ada, Frama-C,
…more advanced vulnerability detection tools (e.g., fuzz testing becoming standard practice),
and the inclusion of static analysis passes in compilers (e.g. introduced in GCC in 2020).

With these advancements, enhancing microarchitecture security remains imperative, as
attackers continue to seek new ways to exploit weaknesses when memory safety is properly
implemented.

This part examines strategies to improve the microarchitectural security of modern cores
without necessitating a complete redesign, a process that would be prohibitively costly given
the complexity of current architectures. To limit the scope, this part focuses on techniques for
mitigating covert channels (chapter 5 and 6) and transient execution attacks (chapter 7
and 8) using solutions that are realistically applicable to existing cores.

5. Using Timing Measurements to Exfiltrate
Information

The first family of vulnerabilities explored in this document are observation attacks on applica-
tive processors leveraging timing measurements as the leaking physical quantities.

They are called timing channels and refer to the possibility for an attacker to exfiltrate
data through variations in the execution time of certain operations.

5.1 Covert and Side Channels
The ability of an attacker to exfiltrate and retrieve a secret can be viewed as the establishment
of a communication channel. The attacker’s goal is to establish this communication channel
across an architectural security boundary. For example, this could allow a user-mode process
to read a secret manipulated during a system call executed in supervisor mode.

The sender in this communication is generally referred to as a Trojan, while the receiver
is called a Spy, as illustrated in Figure 5.1.

Figure 5.1: Covert and side channels are illegitimate communication channels between a sender,
called the Trojan, and a receiver, called the Spy.

Two scenarios are considered:
• Covert channels refer to communication channels where the attacker controls both the

Trojan and the Spy.
• Side channels are communication channels where the attacker controls only the Spy,

while the Trojan’s role is inadvertently played by the victim.
The characteristics of this communication channel are determined by measuring its chan-

nel capacity, a theoretical measure of the maximum amount of information that can be
transmitted per message (and, by extension, per unit of time). This channel capacity can be
evaluated, analytically in simple cases, or empirically in the general case, using the matrix that
characterises the channel. This matrix, denoted as Me,t , is constructed by determining the
probability that a symbol t sent by the Trojan is received as symbol e. A perfect channel is

29

5.1 Covert and Side Channels 30

characterised by a channel matrix equal to the identity matrix. In practice, however, timing
channels are rarely perfect due to noise introduced by microarchitectural activity.

Even if the probability of correctly reading a value from the channel is less than one,
corresponding to noise in the communication channel, it is still possible to design a reliable
communication protocol.

5.1.1 Support for Covert and Side Channels
This abstract definition does not specify which physical quantity is leveraged to transmit
information.

Timing-based covert and side channels measure the duration of specific events, such as
cache memory access time, as the transmitted symbol. Timing channels are particularly sig-
nificant because timing measurements can be taken remotely, for instance, over a network,
making them a potential threat to any connected device.

On the other hand, power or EM channels use voltage levels as transmitted symbols. Indeed,
complementary metal-oxide-semiconductor (CMOS) technologies consume different amounts
of power depending on whether a logic gate outputs a ‘0’ or a ‘1’ and whether it switches
states or not. By measuring power consumption or EM emissions, an attacker can extract
information about the data being processed by a device. These channels typically require the
attacker to have physical access to the device[38].

0 5000 10000 15000 20000
times

0.1

0.0

0.1

0.2

0.3

Va
ria

tio
n

of
 p

ow
er

 c
on

su
m

pt
io

n

0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Simple power analysis on RSA decryption algorithm

Figure 5.2: Simple Power Analysis against RSA’s Square and Multiply algorithm (From Jonathan
Amatu, Maël Leproust, Salim Sama Mola et Alexis Prou work at IMT-Atlantique)

5.1.2 Timing Threat Models
An attacker capable of writing a secret to memory and later reading the value can establish a
covert channel. However, if the ISA permits such an operation, it would generally be classified
as a software vulnerability rather than a covert channel.

Architectural and microarchitectural timing channels are usually distinguished. An archi-
tectural timing channel is a communication channel that arises from variations in instruction
patterns (architectural in the sense of the instruction set architecture (ISA)). A microarchitec-
tural timing channel enables communication using the same instruction pattern but exploits
variations introduced by the microarchitecture itself.

In this document, I focus on the following threat models:
1. Architectural timing side channels: The control flow of a program depends on secret

data. Typical examples include PIN verification (illustrated in listing 5.1) and modular
exponentiation.

5.2 Architectural Timing Channels 31

2. Microarchitectural timing covert and side channels: The value is transmitted by
modifying a microarchitectural state. The attacker may deliberately execute a gadget (a
short sequence of instructions) within the victim’s security domain to alter this microar-
chitectural state.

5.2 Architectural Timing Channels
5.2.1 Presenting Architectural Timing Channels

The most well-known architectural timing channel is likely the improper PIN verification that
is not executed in constant time.

Listing 5.1 A function that compares two byte arrays. The function returns as soon as it
detects a mismatch. This behaviour leaks information through timing side channels, revealing
which digit is incorrect.

1 // A naive PIN verification function compares two byte arrays:
2 // the secret PIN and the user input.
3 bool compare_array(uint8_t *a, uint8_t *b, size_t len) {
4 for (size_t i = 0; i < len; i++) {
5 if (a[i] != b[i]) {
6 return false; // leaks information
7 }
8 }
9 return true;

10 }

In listing 5.1, the function compare_array terminates as soon as it encounters a difference
between the two arrays line 6. This allows an attacker to measure the function’s execution
time and infer the index i of the first mismatching digit.

With this information, an attacker can attempt all 10 possible values for the first digit
and select the one that results in a longer execution time as the correct one. They can
then proceed with the second digit, and so on, reducing the number of possible PINs for a
4-digit PIN from 104 = 10000 to only 4× 10 = 40. At first glance, 40 may seem sufficiently
high, especially when an attacker is limited to only 3 attempts. However, in the context of
smartcard smuggling, attackers consider the probability of success over numerous stolen cards.
The difference between a 3 in 10000 chance and a 3 in 40 chance significantly alters the return
on investment for criminals.

5.2.2 Current Solutions Against Architectural Timing Channels
Having established the threat, potential solutions are discussed in this section.

5.2.2.1 Constant-Time Code
The most straightforward solution, simple in appearance, is to ensure that the program control
flow does not depend on secret data.

The PIN verification function can be rewritten, as in listing 5.2, to maintain a unique
control flow, eliminating early returns when a mismatch occurs.

5.2 Architectural Timing Channels 32

Listing 5.2 A function that compares two byte arrays in constant time.
1 // A constant-time PIN verification function compares two byte arrays:
2 // the PIN and the user input.
3 bool compare_array(uint8_t *a, uint8_t *b, size_t len) {
4 uint8_t result = 0;
5 for (size_t i = 0; i < len; i++) {
6 result |= a[i] ^ b[i];
7 }
8 return result == 0;
9 }

The exact guarantee sought is data-independent execution time. In most cases, this
guarantee is provided by constant-time instructions, which inherently ensure execution time
does not depend on input data. However, achieving constant-time execution can sometimes
be challenging due to timing variations introduced by the microarchitectural state, such as
cache contention.

Ensuring the production of constant-time code by compilers remains an active area of
research [4, 7]. Cryptographic implementations are often written in hand-optimised assembly to
guarantee constant-time execution, particularly because mainstream compilers are still largely
unable to enforce this property reliably.
Avoiding Branches The most straightforward countermeasure is to prohibit any branch in-
struction that takes a secret register as an argument. However, this is easier said than done;
how is it determined whether a register holds a secret?

On one hand, there is no hardware concept of a “secret-holding” register; registers are
simply storage locations. Then it is necessary, not only to prevent branching based on secret
values, but also on any value derived from a secret. This implies the need to track the
propagation of values that depend on secrets.

These challenges lead to interesting research topics, particularly in compiler design. How-
ever, they are considered beyond the scope of this document.
CMOV Semantics Conditional move (CMOV) instructions can replace certain branches, main-
taining a linear control flow instead. In the RISC-V ecosystem, these can be implemented using
the Zicond extension, which is now part of the RISC-V unprivileged specification. This exten-
sion defines two instructions:

• czero.eqz rd, rs1, rs2 , which “moves zero to rd if rs2 is equal to zero; other-
wise, it moves rs1 to rd .”

• czero.nez rd, rs1, rs2 , which “moves zero to rd if rs2 is nonzero; otherwise,
it moves rs1 to rd .”

Using these instructions, the CMOV semantics can be implemented with three instructions,
as shown in listing 5.3.

Listing 5.3 Conditional selection: if rc is zero, then rd ← rs1 ; otherwise, rd ← rs2 .
1 czero.nez rd, rs1, rc
2 czero.eqz rtmp, rs2, rc
3 or rd, rd, rtmp

5.2.2.2 Zkt
One issue with purely architectural solutions is that they inherently rely on assumptions about
microarchitectural behaviour. For example, the function in listing 5.2 is constant-time, but

5.2 Architectural Timing Channels 33

only under the assumption that an XOR operation between two bytes has a constant execution
time. Is this assumption valid? In most cases, yes, but there is no formal guarantee: it depends
on the microarchitecture.

The RISC-V ISA addresses this issue by introducing an extension: Zkt [98].
The core idea behind this extension is to define a list of instructions that must have data-

independent execution durations. In particular, the instructions czero.eqz and czero.nez
fall under this guarantee.

While this marks an improvement over the current state of affairs, I believe this extension
provides fewer guarantees than one might expect. Specifically, the extension enforces data-
independent execution times for individual instructions, but it makes no guarantees regarding
the data-dependent duration of instruction sequences. It remains possible for two constant-
time instructions to form a sequence whose execution time varies with data. For instance,
microarchitectural optimisations such as special-case handling (e.g. when a register equals
zero) can still introduce timing variations.

Therefore, it is not possible in my opinion, to completely dissociate architectural versus mi-
croarchitectural timing channels. While it is necessary to prevent architectural timing channels,
it is not sufficient.

6. Preventing Microarchitectural Timing
Covert and Side Channels

The previous chapter introduced architectural timing channels, where timing variations were
due to instructions. But if one prevents architectural timing channels, other possibilities exist:
timing variations due to the microarchitecture. This chapter describes this recent threat and
how to counter it.

6.1 Microarchitectural Covert Channels
Microarchitectural timing covert and side channels can occur even in the absence of architec-
tural channels. In other words, it is possible for the constant-time implementation in listing 5.2
to still leak information through timing variations. For example, if the microarchitectural im-
plementation of the xor instruction had timing dependencies based on its inputs, an unlikely
scenario in practice.

More realistically, modern microarchitectures inherently introduce timing dependencies,
primarily as a byproduct of performance optimisations. These include mechanisms such as
cache memories and branch/jump prediction, which can inadvertently create exploitable timing
variations. Such variations enable attackers to exfiltrate secrets that should otherwise remain
inaccessible.

A concrete example is provided in subsection 6.1.1, where the BHT branch predictor is
used as a communication channel.

6.1.1 Case Study: Using the BHT as a Covert Channel
Any microarchitectural structure that utilises memory elements can serve as a basis for covert
channels. Branch predictors are no exception, and this section demonstrates how to construct
one using the BHT.

A BHT is a branch predicting structure that associates a 2-bit counter to the least signifi-
cant bits of the address of an instruction (e.g. 4 bits for 16 counters). This counter memorises
the number of times associated instructions had a taken (T) condition in the last 4 branches.
The counter’s most significant bit is the next branch direction prediction.

The idea behind the covert channel is to use a gadget that allows forcing the state of the
BHT table. This gadget consists of several identical blt a0, a1, end instructions, which
compare the two registers a0 and a1 and branch to the address of the label end if a0 is
strictly lower than a1 (branch if lower than). There are as many branching instructions as
there are counters in the BHT. Finally, the last instruction at the labelled address end is a
function return (ret).

34

6.1 Microarchitectural Covert Channels 35

The attack begins with an initialisation step, which consists of clearing all the counters
by executing the first branch with a not-taken (N) condition (a0 ̸< a1), as illustrated in
Figure 6.1a. This operation is repeated three times to set all counters to 0.

(a) Initialising counters to 0. (b) The Trojan selects a counter to increment
by executing branch i with the taken (T) con-
dition.

Figure 6.1: The BHT states at initialisation and after the message emission by the Trojan.

Next, the Trojan selects the value i to encode, corresponding to a unique counter in the
BHT. It then executes the corresponding instruction three times with the taken (T) condition
(a0 < a1), as shown in Figure 6.1b. Due to the condition, only this branch is executed, as it
jumps to end for the next instruction.

Finally, the Spy tests the value o, corresponding to a counter, by measuring the execution
time of this branch under the T condition. If execution is fast, then i = o; if it is slow, the
values differ.

By measuring execution times for all combinations of i and o, a pattern as in Figure 6.2 is
obtained, highlighting the presence of a covert channel.

Figure 6.2: The timing matrix on the Aubrac core, highlighting the presence of a covert channel
on the BHT. From [20].

From the timing matrix in Figure 6.2, and using a Spy’s decision criterion, for example,

6.1 Microarchitectural Covert Channels 36

time < 32 cycles, it is possible to construct the probability matrix characterising the channel
and thereby measure its capacity. Specifically, it is sufficient to determine the probability of
making a decision, normalised by column (according to the value of the Trojan’s message).

The absence of a vulnerability, meaning the impossibility of establishing a channel with this
specific timing channel, would imply that execution times are independent of the Trojan’s value.
This would be reflected in a timing matrix where all rows remain constant. In a more realistic
setting, execution times are influenced by independent factors, such as software running in
parallel on the same processor but on a different core that shares the last level cache (LLC).
Thus, in this case, there is noise in the measurements, making a stochastic approach more
appropriate.

6.1.2 Microarchitectural Elements Likely to Create a Covert Channel
Historically, data caches were the first microarchitectural elements to be exploited as covert
channels [8, 95]. The fundamental observation is that the time required to access memory
depends on whether the data is present in the cache.

However, caches are just one of many potential covert channels. In general, any stateful
microarchitectural element can be leveraged as a communication channel.

This includes:
• L1D, L1I, and LLC caches [8, 95],
• Micro-op caches [52],
• Page tables [12],
• Translation lookaside buffer (TLB) structures [28],
• BTB structures [1],
• RSB (Return Stack Buffer),
• Branch predictors [1],
• Prefetchers [62],
• Port contention due to SMT [3],
• State machines such as cache controllers [61],
• Performance counters [49],
• Dynamic voltage and frequency scaling (DVFS) [69],
Each covert channel leverages microarchitectural elements in clever, often subtle, ways.

Many of these techniques are complex and rely on attack scenarios that may not always be
practical. As a result, assessing the real-world exploitability of these channels is often difficult.

However, the underlying vulnerabilities are real, and attack techniques continue to evolve.
Hardening cache memories alone cannot be considered a sufficient solution for pre-
venting covert channels and, by extension, transient execution attacks.

As discussed in section 5.1, covert and side channels are distinguished by the nature of the
emitter in the communication channel: the attacker for covert channels, the victim for side
channels.

But some scenarios can be ambiguous. For example, if the emission of secret data originates
from a gadget within the victim’s program, but the attacker triggers this gadget (e.g. by
influencing branch prediction), the classification can be debated. However, in this document,
I classify such cases as covert channels, since the attacker’s actions are the source of the
emission. However, others may argue that this should be considered a side channel.

From a security design perspective, circuit designers focused on hardened security should
prioritise countering covert channels. This approach assumes a more powerful attacker model,
and a system that effectively prevents covert channels will inherently prevent side channels as
well.

6.2 Countermeasures to Microarchitectural Timing Covert Channels 37

6.2 Countermeasures to Microarchitectural Timing Covert Channels

“Under the Dome: Preventing Hardware Timing Information Leakage” Math-
ieu Escouteloup, Ronan Lashermes, Jacques Fournier, and Jean-Louis Lanet. Smart
Card Research and Advanced Applications - 20th International Conference,
CARDIS 2021 [20]

This section presents results from the PhD Thesis of Mathieu Escouteloup that I advised.

Microarchitectural data sharing, while responsible for covert channels, is a desirable feature.
Without it, core performance would suffer significantly. However, depending on the application,
selectively disallowing data sharing becomes necessary.

Preventing data sharing is commonly achieved by partitioning state. Partitioning can be
categorised into two main types [20]:

• Temporal partitioning means that at any given time, the microarchitectural state is
exclusively associated with a single security domain. Consequently, switching to a new
domain requires flushing the entire state, which can be prohibitively slow in some cases.

• Spatial partitioning means that, at the same point in time, different security domains
have separate, dedicated microarchitectural resources. This approach prevents direct
interference between domains without requiring frequent state flushes. However, it may
require additional hardware support and careful resource allocation to avoid inefficiencies.
Two variants of spatial partitioning exist:

– Tag-based partitioning assigns a tag value to each microarchitectural resource
entry, indicating the associated security domain. Since tag-based partitioning can
dynamically adjust the proportion of entries allocated to each security domain, it
allows for a high-performance solution. However, it does not protect against covert
channels: entry allocation itself can be exploited as a covert channel.

– Static partitioning is required to prevent covert channels. In this approach, re-
source allocation remains constant for the lifetime of any security domain, ensuring
that no unintended information leakage occurs.

A fundamental challenge is deciding when and across which boundaries partitioning
should be triggered. To minimise ISA modifications, enforcing microarchitectural state isolation
can leverage existing architectural concepts already specified by the ISA, despite their original
designs not considering security explicitly.

6.2.1 Leveraging Existing Architectural Security Boundaries
The absence of explicit security domains complicates countermeasure implementation. Never-
theless, the ISA specifies concepts naturally mapping to security boundaries:

• Privilege levels define microarchitectural states wherein certain features are accessible
only with appropriate privilege. RISC-V defines four privilege levels: User, Supervisor,
Hypervisor, and Machine, ordered from least to most privileged. Certain CSRs are ac-
cessible only at supervisor or machine levels. For example, supervisor mode can modify
the satp register, controlling virtual memory and access to sensitive data.

Spatial partitioning is feasible by duplicating microarchitectural data structures (e.g.,
caches, predictors) based on privilege levels. For instance, separating branch predic-
tor states between supervisor and user modes ensures no covert channel exists across
this boundary, as they share no state. Intel implemented similar isolation for predictors

https://ronan.lashermes.0nline.fr/papers/CARDIS2021.pdf

6.2 Countermeasures to Microarchitectural Timing Covert Channels 38

through mechanisms such as indirect branch restricted speculation (IBRS) (see subsec-
tion 8.1.1).

Exemple 6.1 - The BTB Case

A typical example illustrating privilege-level partitioning importance is protecting
the BTB across privilege boundaries. The BTB is a microarchitectural predictor as-
sociating a branch/jump destination with its congruent source address (matching
least significant bits). Historically, shared BTB state enabled user-mode attack-
ers to manipulate predictions toward attacker-defined gadgets, causing higher-
privileged modes (e.g., supervisor) to execute these gadgets upon privilege-level
switches (branch target injection (BTI)).
Modern cores spatially partition the BTB across privilege levels to mitigate BTI.
Based on available documentation (though without absolute certainty), this par-
titioning appears to use tag-based mechanisms. While effective against BTI,
tag-based partitioning generally does not prevent covert channels.

• Address space identifier (ASID) (Address Space Identifier) is a numerical identifier
within the satp register, uniquely identifying different address spaces. Initially conceived
for performance optimisation, it relates closely (though imperfectly) to the notion of a
software process. It cannot be assumed that code sharing the same ASID can always
trust each other, but different ASIDs typically imply isolation.

Due to the potentially large number of concurrent processes (thus ASIDs), spatial parti-
tioning becomes impractical. Temporal partitioning is preferred: when the ASID value
in satp is modified, the microarchitecture triggers a generalised state flush (caches, pre-
dictors, etc.), ensuring no residual information leakage across address-space boundaries.

• Virtual machine identifier (VMID) (Virtual Machine Identifier) is a register field
analogous to ASID, distinguishing different virtual machines.

Similar to ASID, spatial partitioning is generally infeasible due to scalability constraints.
Hence, temporal partitioning (generalised flush upon VMID change) is used.

• Physical memory protection (PMP) (Physical Memory Protection) is a mecha-
nism tied to the machine privilege level restricting read/write access to specific physical
memory regions. Although it is a clear hardware boundary, it does not directly isolate
microarchitectural state.

However, several challenges emerge when leveraging these existing boundaries:
1. Originally not security-focused: ASID and VMID were performance-driven features.

Repurposing them for security isolation makes setting these identifiers security-critical,
necessitating hardened software implementations.

2. Limited bit-width: ASID fields are limited to 9-bit (SXLEN= 32) or 16-bit (SXLEN= 64),
and VMID fields to 7-bit or 14-bit, respectively. Identifier collisions can thus occur.
Consequently, flushing decisions should depend on explicit register writes (e.g., to satp)
rather than solely on identifier values.

3. Separation of concerns: ASID and VMID originally identify address spaces or virtual
machines. Their incidental use as security boundaries imposes rigid software-level gran-
ularity on the security model, restricting flexibility in defining security domains.

To address these challenges, defining a dedicated mechanism explicitly designed to trigger
microarchitectural partitioning might ultimately be necessary.

6.2 Countermeasures to Microarchitectural Timing Covert Channels 39

6.2.2 Timing Fences
In [72], the authors propose a new fence.t instruction that triggers microarchitectural state
flushing. The OS is then responsible for placing these instructions at the appropriate locations,
specifically at security domain boundaries, as defined by the OS. They characterise this solu-
tion using channel matrices (cf. section 5.1) and demonstrate its effectiveness on a RISC-V
CVA6/Ariane core. In this paper, the semantics of fence.t are defined as follows: fence.t
“isolates the timing of any subsequent execution from what happened before.”

More concretely, the authors trigger a microarchitectural reset when executing this instruc-
tion. In the first, “naïve” version, they performed the following operations:

• The pipeline is flushed.
• The L1 cache, TLB, and BTB are cleared by invalidating their entries.
• BHT saturation counters are reset.

Unfortunately, the authors show that this was insufficient, as they were still able to detect
leakage. In a second, “final” version, they additionally performed the following operations:

• The LFSR used for L1 cache replacement is cleared.
• The L1D round-robin arbiter is reset.
• The pseudo-LRU state for TLB replacement is cleared.
With all these modifications, the authors show that covert channels were no longer detected

in their tests. The cost of a context switch using fence.t was measured at 1502 clock cycles,
compared to 1180 cycles in the worst case without fence.t , representing an overhead of
approximately 30%. The most costly operation is flushing the cache, even though the target
chip (CVA6) uses a write-through cache. Higher costs can be expected for write-back caches.

This concept is further extended in [73], where the authors specifically study the issue of
timer interrupts: the interrupt occurs at a publicly known time during the execution of the
targeted process. If this interrupt triggers a process switch where the new destination process
is controlled by the attacker, they can measure the timing between the interrupt and the switch.
This timing depends on the state of the target process and can be exploited to leak information.
To mitigate this, the authors propose applying a padding time scheme, ensuring that process
switches occur in constant time from the perspective of the destination process.

6.2.3 Domes
The fence.t proposal focuses on temporal partitioning. Since it only marks the boundaries
of security domains rather than defining the domains themselves, there is no way to enable
spatial partitioning.

In [20], we instead proposed identifying security domains (also referred to as “domes”)
using a unique identifier. A change in this identifier signals to the hardware that partitioning
is necessary. However, the identifier also enables additional hardware optimisations, particu-
larly allowing spatial partitioning. We demonstrate the effectiveness of this approach on our
own RISC-V core and introduce a new suite of dedicated benchmarks, timesecbench, which
evaluates channel matrices for specific microarchitectural structures (L1D, L1I, BHT, BTB).

The core principle of a correct dome implementation is that microarchitectural resources
and states must be statically allocated to a security domain upon its creation and can only be
reallocated once the domain terminates. As a result, security domains must be coarse-grained:
they should correspond to processes or similar constructs but not to individual routines, as the
overhead of switching domains would be too high. We establish design guidelines to mitigate
security risks:

1. Static allocation: The minimal resources required by a security domain must be allo-
cated at its creation and locked until its deletion.

2. Release: When a security domain terminates, all associated resources must be released
only after all persistent states have been erased.

https://gitlab.inria.fr/rlasherm/timesecbench

6.2 Countermeasures to Microarchitectural Timing Covert Channels 40

3. Partitioning: Any resource that serves multiple security domains simultaneously must
be able to partition each domain’s state into its own isolated compartment. States and
data cannot be shared.

4. Availability split: A spatially shared resource must ensure that, at any given time, its
availability for a security domain is independent of the other domains being served.

5. Homogeneity: During execution, all users must be treated equally, with the same types
and quantities of allocated resources.

All microarchitectural resources must be explicitly managed as such, with a dedicated
lifecycle status finite state machine (FSM), as illustrated in Figure 6.3.

Figure 6.3: The lifecycle of all resources.

A hardware component is responsible for allocating resources based on domain requirements
and resource availability. An example is shown in Figure 6.4.

S
p
re

a
d

Free

D0 allocate

Free

Free

Free

(a) Domain 0 re-
quests minimal re-
sources.

S
p
re

a
d

D1 allocate

Free

Free

Free

D0-0

(b) Domain 1 re-
quests maximal re-
sources.

S
p
re

a
d

D0-0

D1-0

D1-1

D1-2

D0 release

(c) Domain 0
releases all its re-
sources.

S
p
re
a
d D1-0

D1-1

D1-2

Free

(d) Resource alloca-
tion for Domain 1 re-
mains unchanged af-
ter the initial alloca-
tion.

Figure 6.4: Resource allocation process.

Based on these principles, two full RISC-V cores have been designed. The Aubrac core
(Figure 6.5) is a classic 5-stage in-order core, enabling comparisons of security and performance
with similar designs. The Salers core (Figure 6.6), on the other hand, is more innovative. It
supports SMT with two harts in an in-order design. SMT presents the most challenging security
concerns in resource sharing, and this core allows us to explore potential solutions.

Finally, we evaluated the security of our cores using a newly developed benchmark suite:
timesecbench. This suite assesses channel matrices for common microarchitectural states
(L1D, L1I, BHT, BTB) and is extensible. It can generate the corresponding figures, as shown
in Figure 6.7, which presents the channel matrix for an unprotected BTB component.

https://gitlab.inria.fr/rlasherm/timesecbench

6.2 Countermeasures to Microarchitectural Timing Covert Channels 41

Figure 6.5: The Aubrac core is a classic 5-stage in-order core[20].

Figure 6.6: The Salers core is an SMT in-order core with two harts, enabling tests on the limits
of safe resource sharing[20].

A secure microarchitecture exhibits no horizontal variability in these channel matrices,
which can be quantitatively assessed. Using this suite, we demonstrate that both of our cores
are secure against leakage from these microarchitectural resources.

The hardware cost of this solution is relatively low, with up to +3% look-up tables (LUTs)
utilisation and up to +7% flip-flops (FFs). However, the timing overhead is significant, requir-
ing up to 68 clock cycles for a dome switch. Since flushing can be performed in just a few
cycles in our design, the primary source of this overhead is the cold state after each domain
switch.

Timing fences and domes provide strong security guarantees but suffer from a substantial
performance penalty: microarchitectural state sharing is critical for performance.

6.2.4 fence.time as an Official RISC-V Extension in Development
I lead an effort to standardise a solution against timing covert and side channels for the RISC-V
Foundation as the chair of the Timing Fences Task Group. There are two existing solutions
in the literature, but only one mechanism can be standardised. Which one should be pushed
forward? The group’s work identified several issues, notably:

6.2 Countermeasures to Microarchitectural Timing Covert Channels 42

Figure 6.7: The channel matrix of an unprotected BTB.

• fence.t clearly lacks a mechanism for spatial partitioning. For example, some cores
share predictors across privilege levels (requiring temporal partitioning), while others
have dedicated predictors per level (allowing spatial partitioning). The fence.t solution
would require inserting fence.t only for cores that share predictors, but not for others,
an approach that lacks portability.

• The domes mechanism is complex to implement in both hardware and software, and
adapting it to an existing core is particularly challenging. In our case, we implemented
an entire core from scratch.

We concluded with a new solution heavily inspired by fence.t , called fence.time (definition
6.1).

Definition 6.1 - Fence.time Semantics

We define a new fence.time [flags] instruction with the following role:

The timing of any instruction or sequence of instructions executing after the fence
must be independent of any microarchitectural state before the fence. The flags
may exclude this requirement for specific subsets of microarchitectural state.

In this definition, timing refers to any latency measurable by an attacker: whether it
is the actual execution latency of an instruction, time spent in the issue queue, or any
other measurable delay.
The defined flags are as follows:

• PRIV_SWITCH: The fence.time instruction is associated with a privilege level
change.

• AS_SWITCH: The fence.time instruction is associated with an address space
change.

• VM_SWITCH: The fence.time instruction is associated with a virtual machine
change.

Any combination of flags is valid.

With this definition, we achieve a simple security boundary decision while providing addi-
tional information about the nature of the boundary, thereby enabling spatial partitioning. For
example, a system call would require a fence.time PRIV_SWITCH instruction, which works
for both temporal and spatial partitioning, depending on the hardware implementation.

6.2 Countermeasures to Microarchitectural Timing Covert Channels 43

6.2.5 Conclusion on Countermeasures Against Covert Channels
The solutions (fence.t , fence.time , and domes) presented in this chapter help mitigate
covert channels in the microarchitecture. Unfortunately, they still have inherent limitations
that must be considered.

1. Flushing the entire microarchitectural state can be prohibitively slow, and is typically
only done at a coarse granularity, such as switching to a new process or a new virtual
machine. Due to the lack of proof-of-concept implementations, I am unsure about
the performance/security trade-offs for finer-grained security domain switches, such as
system calls or interrupts.

2. These protections are difficult to implement perfectly in hardware. Any microarchitec-
tural state can potentially support covert channels, including all FSMs. There is an un-
avoidable trade-off between which states can be reasonably partitioned and which might
still leak information. A perfect implementation could only be demonstrated through
hardware formal methods, which cannot yet scale to complex cores.

3. Their implementation would be significantly different on large out-of-order cores, where
flushing the microarchitectural state could be prohibitively slow.

4. These solutions offer no protection against attackers using physical attacks. They rely on
the assumption that the covert channel spy is code running on the same core. However,
if an attacker can measure power consumption or infer timing through electromagnetic
emissions, these protections become ineffective. A simpler case arises when timing mea-
surements can be performed from a peripheral in the SoC.

5. Only fence.t proposes a mechanism to protect against information leakage caused by
interrupts.

6. In multicore systems, some microarchitectural states, such as the last level cache (LLC),
are typically shared across cores. There is currently no definitive solution for handling
this edge case.

Mitigating covert channels must be part of the microarchitecture design process. However,
designers must keep in mind that the inherent limitations of current solutions still allow covert
channels in specific cases. In particular, covert channels remain possible within the same
security domain during speculative execution, as explored in Chapters 7 and 8.

7. The Dangers of Speculation

Covert channels provide a means of transmitting confidential data across security boundaries.
However, for an exploit to occur, a secret value must first be accessed. A recent [37] class of
attacks, known as transient attacks, leverages speculative execution to read secrets: transient
attacks combine control flow hijacking during speculative execution to acquire a secret, followed
by a disclosure gadget that transmits the secret through a covert channel.

In this chapter, I introduce the fundamental principles behind transient attacks. While
some exploits are described, an exhaustive literature review would require extensive technical
explanations that are beyond the scope of this document and are not included.

7.1 Microarchitectural Data Sampling
Microarchitectural data sampling (MDS) attacks refer to a set of attacks.

They distinguish themselves from Spectre attacks based on an argument dating back to
the early days of transient attacks:

“ Unlike other recent attacks such as Spectre, Meltdown, and Foreshadow,
which are based on vulnerabilities leaking data from the CPU caches, RIDL
and Fallout collect data from internal CPU buffers (Line Fill Buffers, Load
Ports, Store Buffers). ”

– MDS differentiation from the MDS papers authors

As discussed in section 7.3, Spectre and Meltdown attacks do not necessarily leak data
from caches; they can also exploit internal CPU buffers.

In this chapter, I propose an alternative definition of MDS attacks, focusing on their threat
model.

Definition 7.1 - Microarchitectural Data Sampling Attacks

MDS attacks exploit the microarchitecture to leak secret data that is legitimately used by
an application, using a microarchitectural covert channel. Secrets are moved within the
microarchitecture as intended by the application, leaving traces in the microarchitectural
state. As a result, an attacker can leak these secrets, including in speculative mode,
through an unintended execution path that operates on the secret.

44

https://mdsattacks.com/

7.2 Meltdown and its Variants 45

Numerous exploits fall into this category, and I present only the most significant ones here.
RIDL [57] targets line fill buffers (LFBs), data structures that track memory requests

leaving the load store unit (LSU), enabling optimisations such as request merging. The authors
demonstrate that privileged execution can leak data to a userland application by leaving traces
in the LFB.

ZombieLoad [60] is similar to RIDL and also exploits LFBs. The authors show that a
misspeculated load may introduce data into the LFB, which can subsequently be read, even
from a different hart on the same core.

Fallout [14] focuses on store buffers within the LSU. In particular, it leverages a faulty
store-to-load forwarding mechanism in certain Intel processors to forcibly pass data from a
store instruction to a subsequent load .

7.2 Meltdown and its Variants
Meltdown is an attack first published in 2018 [41]. It exploits poor exception handling in some
out-of-order (OoO) execution cores, mostly Intel cores originally.

Although this family of attacks is no longer considered a major threat, since mitigating it
is relatively straightforward, a quick review of how it works is presented here.

Listing 7.1 C code for the Meltdown attack.
1 uint8_t forbidden_secret = *secret_address;
2 uint8_t trojan = array1[forbidden_secret * 4096];

In listing 7.1, the attacker attempts to read a secret by dereferencing a pointer without the
necessary privileges (user-level instead of supervisor-level). This instruction triggers a hardware
exception.

Since hardware exceptions are expected to be rare, modern processors often optimise for
the case where they do not occur. Execution continues normally under this assumption until
the speculation is resolved before the instruction commit. If an exception does occur, execution
is rolled back, just as in speculative execution.

Thus, in listing 7.1, the second line, which reads data from an address dependent on the
secret, is executed before the exception is handled, only to be later discarded. However, the
rollback does not clear the caches: the secret remains in the cache line’s tag (address). The
attacker can then retrieve the secret by measuring access times to determine which array value
is in the cache.

The solution is simple: data should not be accessible before the associated exceptions are
resolved.

The original Meltdown attack [41] triggers an exception by loading data from a memory
page that requires supervisor privileges. In Linux, kernel memory is mapped into the user pro-
cess’s memory space but is protected by page permissions that restrict access to the supervisor
level. Thus, any access to protected memory triggers an exception and therein lies the problem.

Other Meltdown variants have been developed. In [13], the authors categorise these variants
based on the type of exception used or the specific protection bits in the page table that trigger
an exception. Notably, some variants, such as Meltdown Bound-Check Bypass, are effective on
AMD processors as well as Intel. This variant exploits the Bound Range Exceeded exception,
which can be triggered after the x86 bound instruction.

Ultimately, the Meltdown exploit combines a vulnerability related to poor exception han-
dling with a microarchitectural covert channel. While not immediately obvious, careful proces-
sor design with robust exception handling can effectively mitigate this exploit.

7.3 A Presentation of Spectre Attacks 46

7.3 A Presentation of Spectre Attacks
Also published in 2018 [37], the Spectre attack exploits the speculative behaviour of the
processor core. Unlike Meltdown, which can be seen as an implementation error, Spectre is
an attack inherent to the very principle of speculative execution. As a result, it is much more
difficult to defend against. Even today, and to be fair, since its publication, it has always been
challenging to exploit Spectre attacks in practice. However, the underlying vulnerability is real
and remains present, allowing new variations of the attack to emerge regularly.

7.3.1 Basic Principle
A Spectre gadget, the sequence of code/instructions that allow a Spectre attack, is relatively
simple from a programming language perspective.

Listing 7.2 C code for the Spectre-PHT attack.
1 if (x < array1_size) {
2 y = array2[array1[x] * 4096];
3 }

The code in listing 7.2 can be broken down as follows:
• The attacker repeatedly executes this same code, the Spectre gadget, while ensuring

that the branch condition (line 1) is met. Alternatively, in some attack scenarios, an-
other process manipulates the branch history so that the branch predictor assumes this
condition will always hold.

• A new execution is launched where the branch condition (line 1) is not met (i.e. the
index is out of bounds). This introduces the speculation gadget.

• Due to branch prediction, the “if” branch is still speculatively executed, even though the
index is out of bounds.

• A speculative LOAD (line 2) operation is performed at an arbitrary address array1 + x,
allowing the attacker to read the secret s. This step constitutes the acquisition gadget,
responsible for acquiring the secret.

• A second speculative LOAD (line 2) operation is executed to leak the secret by encoding
it into the tag of a cache line. This forms the disclosure gadget. The secret is shifted
left (· ∗4096) to ensure that it influences the cache line’s tag despite truncation.

The attacker (or ”spy”) then performs a cache timing attack, such as Flush+Reload, to
extract the secret.

7.3.2 Microarchitectural Breakdown
Figure 7.1 illustrates the microarchitectural state when executing a Spectre-PHT gadget on a
NaxRiscv core.

This model provides a more detailed view compared to the general description above:
1. Initially, a sequence of load (ld) and store (sd) instructions is observed. These

serve to increase the speculation window, that is, they delay branch resolution as much
as possible.

2. The branch itself is a beqz (branch if equal to zero) instruction, which is speculated as
NOT TAKEN (N). Incorrectly speculated instructions are shown as hashed-out regions
in Figure 7.1.

3. The branch is followed by a critical load operation that reads the secret (lb t2, 0(a0)).
This operation is executed immediately, even though it is never officially committed.

4. The subsequent instructions select a specific bit from the loaded secret, the bit that the
attacker intends to extract. This value is then multiplied by an appropriate factor (here,

7.3 A Presentation of Spectre Attacks 47

bge a0, max_len, end

add a0, a0, &data

lw s, 0(a0)

slli s, s, 6

add s, s, &arr

lw a0, 0(s)

13Clock Cycles

In
st

ru
ct

io
n

flo
w

Figure 7.1: The microarchitectural state when executing a Spectre gadget. Colours represent
the different pipeline stages. The hashed-out area indicates speculated and uncommitted
instructions.

26 with slli t2, t2, 6) to ensure that it influences the cache line.
5. Finally, a second load operation (ld t2, 0(t2)) accesses the manipulated cache

line, to write the secret in the cache line tag value.
6. The attacker only needs to measure the access time to one of the two targeted cache

lines (corresponding to secret bit values 0 or 1) to infer the secret bit.

7.3.3 Exploits
An interesting feature of this attack is that the listing 7.2 gadget can be part of kernel code;
the attacker only needs to control two elements:

• The offset x, which, for example, could be an argument of a system call. In this case, a
user process can freely choose x.

• The branch history, which determines the predicted execution path. If the branch
predictor is shared between the kernel and user space, the attacker can train
it in user mode. This last point is the main focus of countermeasures introduced in
recent processors (see subsection 8.1.1).

This variant is commonly called Spectre-PHT because it relies on corrupting branch direc-
tion prediction (influencing the pattern history table (PHT)). This highlights the security risks
associated with shared resources, such as the branch history, across different security domains.

However, simply removing the PHT is not sufficient to prevent exploitation; variants exist
for all mechanisms that enable speculative execution.

7.3.4 Variants
A Spectre exploit combines a speculation gadget with a covert channel. The speculation
gadget is responsible for reading the secret in speculative mode, while the covert channel is
used to exfiltrate it. In section 6.1, various types of covert channels that can be leveraged
have been reviewed.

The term “variant” typically refers to different implementations of the speculation gadget:
• Spectre-PHT [37] exploits branch direction speculation, whether through a pattern

history table (PHT) or another mechanism.
• Spectre-BTB [37] relies on branch target speculation via a branch target buffer (BTB).
• Spectre-RSB [43] exploits branch target speculation using a return stack buffer (RSB).
• Spectre-STL [93] abuses alias speculation in the Load Store Queue, also known as spec-

ulative store-to-load forwarding (STL). It speculates that a load following a store does

7.4 Other Transient Attacks 48

not reference overlapping data (alias), thereby assuming no store-to-load forwarding.
• More exotic variants have also been identified [46]:

– String Comparison Overrun, which exploits speculative execution of certain string-
handling instructions in x86.

– Zero Dividend Injection, where speculation is applied to the dividend value in a
division. If the higher-order bits are unavailable, they are speculated to be zero.

– Flop [35] that exploits load value prediction on recent Apple processors.
Thus, any speculative operation can serve as the basis for a new Spectre variant. However,

attacks involving branch/jump target speculation tend to be particularly dangerous, as they
allow the attacker to influence the control flow path.

7.4 Other Transient Attacks
In this document, we classify attacks as Meltdown variants when out-of-order execution enables
the execution of acquisition and disclosure gadgets, and as Spectre variants when speculation
enables gadget execution. However, there is no universally agreed-upon definition for these
attack families. For example, Meltdown attacks can be viewed as a subclass of Spectre attacks,
leveraging the speculation that exceptions will not occur.

One thing is certain: even under the broad definitions given to these two categories, some
attacks do not fit neatly into either.

• Load Value Injection (LVI) [11]. In this work, the attacker can corrupt the result of a
load instruction executed speculatively by the victim. During the speculation window,
the program continues execution using this incorrect value, which can lead to secret
disclosure.

• ExSpectre [67]. This attack explores the idea of malware that hides within speculative
execution windows. The malware payload appears benign under normal execution but
becomes malicious only in a speculative context. Each speculative gadget transmits
its results to the ”normal” execution flow, which then determines the next speculative
gadget to execute, creating a self-sustaining attack chain. A simple example is malware
code that is effectively dead code in a conventional binary analysis but remains active in
speculative execution.

• GhostKnight [78]. This attack leverages speculative execution to amplify the RowHam-
mer attack (which induces memory bit flips in DRAM through repeated accesses). Spec-
ulative load instructions are transmitted to DRAM and can serve as the basis for
RowHammer. Additionally, these speculative load instructions often have elevated
privileges, allowing them to target addresses that should be inaccessible.

• BlindSide [25]. This attack attempts to bypass address space layout randomization
(ASLR) using speculative probing. Typically, probing involves accessing a memory ad-
dress and observing the system’s response—whether the load succeeds, fails due to
insufficient privileges, or attempts to access an unmapped memory region. Performing
this probing speculatively can provide additional information to the attacker.

• GhostRace [50]. This attack exploits speculative execution to trigger transient data
races. While the operating system’s synchronisation primitives are architecturally correct,
data races can still occur in speculative mode, making them exploitable.

8. Dealing with Transient Attacks

8.1 Current Solutions in AMD, ARM, and Intel Microarchitectures
In this section, how major processor manufacturers (Intel, AMD and ARM) have responded
to Spectre attacks is examined. These responses were developed reactively, often in response
to newly published exploits. This led to a proliferation of countermeasures and technologies,
where a more generic and less complex solution would have been preferable. These measures
mix countermeasures against covert channels with those focused on speculative execution.

8.1.1 Intel
Intel’s countermeasures against Spectre appropriately focus on branch predictors and the vul-
nerabilities caused by hardware threads. A webpage [94] lists these technologies and their
usage.

• (Enhanced) Indirect branch restricted speculation (IBRS): One of the reasons Spectre
vulnerabilities are particularly severe on Intel processors is that branch predictor states
were historically shared across privilege levels. This allowed a user process to influence
the branch prediction of subsequent kernel code. IBRS provides hardware support for
isolating the microarchitectural states of these predictors based on privilege level, ensuring
that user-mode predictor entries no longer affect kernel-mode predictions. The precise
hardware mechanism is unknown, but I conjecture that Intel now tags BTB entries with
the privilege level (easy to do and low performance penalty).

• Indirect branch prediction barrier (IBPB): Although predictor states are now separated
between privilege levels, they remain shared across user processes. This enables the
creation of covert channels and manipulation of predictions across address spaces. To
prevent this, a new barrier instruction, IBPB, was introduced. Instructions executed
before the barrier cannot influence branch prediction after the barrier. IBPB specifically
targets indirect jumps.

• Single thread indirect branch predictors (STIBP): As noted with IBRS, predictor states
were shared between privilege levels. They were also shared between hardware threads,
i.e., virtual cores mapped to the same physical core during SMT execution (known as
Hyper-Threading on Intel processors). This meant that one core could influence the
prediction of another core. Following the model of IBRS, STIBP partitions predictor
states between virtual cores.

• LFENCE : Originally a memory barrier, this instruction ensures that a load does not
execute until the address of a preceding store has been resolved, preventing Spectre-

49

8.1 Current Solutions in AMD, ARM, and Intel Microarchitectures 50

STL. More generally, LFENCE introduces dependencies between instructions, reducing
reordering possibilities and limiting the effectiveness of Spectre gadgets. The semantics
of this instruction can act as either a speculation barrier or a serialising instruction,
depending on the specific core it is executed on. Documentation on newer processors
diverges, but one thing is clear: the semantics of LFENCE have evolved toward functioning
as a speculation barrier in newer processors.

• BHI_DIS_S: This indirect predictor control mechanism protects against branch history
injection (BHI) by enforcing partitioning of indirect jumps across different privilege levels.

• Speculative store bypass disable (SSBD): When LFENCE is insufficient, SSBD offers
an alternative mitigation. It works by disabling store bypass at the hardware level,
preventing a load from executing before preceding stores have been resolved.

8.1.2 AMD
AMD’s countermeasures, as required by the x86 architecture, follow Intel’s approach, imple-
menting IBRS, IBPB, and STIBP under the collective name indirect branch control (IBC).
However, the recommendations [85] for applying these countermeasures differ from those of
Intel.

8.1.3 Arm
Arm’s solution revolves around speculation barriers, introducing the speculation barrier (SB)
instruction in the ARMv8 instruction set. The precise semantics of this instruction are complex:

Definition 8.1 - ARM’s Speculation Barrier Semantics

The semantics of the Speculation Barrier dictate that, until the barrier completes, any
instruction appearing later in program order than the barrier:

• Cannot be executed speculatively if such speculation can be observed through
side channels due to control flow speculation or data value speculation.

• Can be speculatively executed based on the prediction that a potentially exception-
generating instruction has not caused an exception.

In particular, any instruction appearing later in program order than the barrier cannot
trigger a speculative allocation in any caching structure where the allocation of that
entry could indicate the presence of specific data values in memory or registers.
The SB instruction:

• Cannot be speculatively executed due to control flow speculation or data value
speculation.

• Can be speculatively executed based on the prediction that a potentially exception-
generating instruction has not caused an exception. The potentially exception-
generating instruction can complete once it is confirmed to be non-speculative,
and all data values generated by instructions appearing earlier in program order
than the SB instruction have been verified.

When instruction stream prediction is not influenced by register outputs from the specu-
lative execution of instructions appearing after an uncompleted SB instruction, the SB
instruction has no effect on how prediction resources are used to fetch the instruction
stream.

Despite its complex definition, the concept of a speculation barrier is simple: it is an
instruction that waits for speculative conditions to resolve before completing its execution. As
a result, the next instruction is never executed speculatively. Placing it in the appropriate
locations, such as before a load , helps prevent Spectre gadgets.

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/tuning-guides/software-techniques-for-managing-speculation.pdf

8.2 Propositions from the Academic Literature 51

8.2 Propositions from the Academic Literature

InvisiSpec[74],
DAWG[36]

CondSpec[40],
SafeSpec[34],
CleanupSpec[54],
EffInvisiS-
pec[55], MI6[9],
NDA[71], Spec-
Shield[6], Spec-
treGuard[24],
STT[76]

IRONHIDE[47],
MuonTrap[2],
Clearing the
Shadows[66],
ConTExT[59],
InvarSpec[80],
SDO[75]

DOLMA[42],
SPT[16]

Context-
Sensitive
Fencing[65]

Spec-
Terminator[32],
SafeBet[29]

2018 2019 2020 2021 2022 2023

Table 8.1: Timeline of Spectre countermeasure papers (2018-2023).

The academic community has extensively explored microarchitectural security, particularly
transient attacks and their countermeasures. However, research in this area faces a significant
challenge: the absence of open-source processors that match the complexity of commercial
products (e.g., Intel, AMD, or Arm). Consequently, results from academic studies often require
extrapolation to these commercial architectures, introducing uncertainties in their practical
applicability.

This section specifically focuses on countermeasures for transient attacks; solutions ad-
dressing covert channels have already been discussed in section 6.2. Relevant surveys (SoK
papers) on transient execution vulnerabilities and countermeasures include [31, 51].

8.2.1 Invisible Speculation: Reverting Mispeculated State
Spectre attacks exploit transient instructions that leave persistent microarchitectural changes.
A theoretically ideal defence involves reverting the microarchitectural state completely after
mispeculation, restoring caches, branch predictors, and internal FSMs to their original states.
However, practically achieving this is challenging.

Several approaches have emerged to implement this idea:
InvisiSpec [74] proposes using a dedicated speculative buffer (an L0 cache) to handle tran-
sient execution. If mispeculation occurs, this buffer is flushed. If speculation is correct, loads
must be reissued to maintain coherence, introducing performance penalties. However, as indi-
cated in section 6.1, focusing exclusively on cache-based covert channels is insufficient, given
alternative leakage vectors.
CleanupSpec [54] extends InvisiSpec, addressing the overhead and coherence issues by apply-
ing state-restoration mechanisms across multiple cache levels (L1, L2, and LLC). Techniques
such as address randomisation (L2 cache), eviction restoration (L1 cache), and random re-
placement policies are introduced.
MuonTrap [2] similarly suggests a dedicated L0 cache specifically for speculative instructions.
DAWG [36] proposes spatial partitioning of caches and predictors according to security do-
mains. While this significantly reduces vulnerability to Spectre attacks, it is not entirely
foolproof, as discussed in subsection 6.2.5.
SafeSpec [34] employs shadow structures (speculative buffers similar to InvisiSpec) and ex-
tends the concept beyond caches to include TLBs.

8.2.2 Selective Speculation: Delaying Risky Speculation
Rather than reverting mispeculated states, another approach is to delay or selectively permit
speculative execution when risks are detected. This strategy, called selective speculation,

8.2 Propositions from the Academic Literature 52

identifies risky situations to suspend or limit speculative behaviour dynamically. Several inde-
pendent proposals explore this approach, including NDA [71], STT [76], and SpecShield [6],
all aiming to identify Spectre gadgets to safely manage speculation.

Selective speculation approaches commonly distinguish three critical events during spec-
ulative execution:

1. Speculation: Instructions triggering speculative execution.
2. Acquisition: Instructions potentially accessing secret data (typically speculative

load operations).
3. Disclosure: Instructions potentially leaking secret data through covert channels.

These approaches often rely on hardware-based taint tracking between acquisition and dis-
closure events, intervening by preventing speculation, disallowing speculative loads, or blocking
covert channels. Earlier intervention improves security but increases performance overhead.

Several notable selective speculation techniques include:
Efficient InvisiSpec [55] reduces InvisiSpec’s performance overhead by proposing alternatives
such as delaying only speculative loads that miss L1 caches or employing value prediction
techniques. It finds that approximately 87% of loads are speculative, with L1 miss rates
between 1% and 25%.
Clearing the Shadows [66] further refines this approach by attempting to determine specu-
lative conditions earlier to manage speculation more efficiently.
SpectreGuard [24] proposes annotating memory regions as confidential or non-confidential,
thus selectively applying defences only to sensitive data.
CondSpec [40] identifies “security-dependent” memory instructions, marking them as safe
or unsafe based on cache behaviour. However, this method exclusively targets cache-based
covert channels, missing other leakage vectors.
ConTExT [59] introduces explicit annotations for sensitive memory data and registers (as
non-transient). Transient execution replaces these sensitive values with dummy data, requiring
source code annotations. Notably, a similar memory-annotation strategy has been patented
by NVIDIA [86].
InvarSpec [80] performs compile-time analysis to identify instructions whose execution and
operands remain unaffected by speculative conditions, deeming them safe for speculation.
SDO [75] relaxes conditions slightly, allowing speculative execution of instructions whose
operands do not influence hardware resource usage.
DOLMA [42] defines transient non-observability, allowing transient instructions provided
their operands do not influence the timing of committed non-transient instructions. This
strategy is a relaxed variation of speculative non-interference.
Speculative Privacy Tracking (SPT) [16] generalises earlier delay-on-miss strategies, al-
lowing speculative execution if operands have already been leaked non-speculatively.

While most selective speculation methods focus on hardware mechanisms, software control
through speculation barriers is also viable. Our own implementations of speculation barriers
are discussed in section 8.4, although earlier solutions exist.
Context-Sensitive Fencing [65] automatically inserts speculation barriers into the micro-op
pipeline according to predefined security policies (e.g., barriers placed between control-flow
instructions and subsequent loads).
SpecTerminator [32] combines multiple techniques, delaying unsafe speculative execution
using hardware-based tainting. Although reporting low overhead (6%), these results have not
been independently reproduced [51].

8.3 Compiler-Based Solutions 53

8.2.3 Protecting Secure Enclaves
Some research works focus on protecting secure enclaves, which are distinct security domains
with stringent security requirements.

MI6 [9], followed by IRONHIDE [47], explores the design of secure enclaves that are immune
to microarchitectural attacks. These works particularly focus on the efficient implementation of
microarchitectural cleanup operations during transitions between secure and non-secure worlds.
IRONHIDE further addresses the specific challenges associated with multicore designs.

SafeBet [29] does not strictly aim to isolate an enclave, but rather introduces isolation
around “trust domains” with dedicated hardware support.

8.2.4 The Use of Formal Methods
Given the complexity of modern microarchitectures, how can it be guaranteed that secrets are
never read speculatively or leaked through covert channels?

Some works address this challenge by establishing hardware-software contracts for specu-
lative behaviour [30]. This paper formally models the interaction between information leakage
and speculative execution. Notably, it demonstrates that simply delaying speculative load
instructions is insufficient; instead, speculative behaviour must be controlled comprehensively.
The study also proves the correctness of speculative taint tracking solutions for ensuring core
security.

ProSpeCT [18] implements this speculative behaviour contract in hardware. The key idea
is to ensure that no secret value can be leaked speculatively because it is exclusively used by
code that runs in constant time. This implementation is realised on the OoO processor Proteus.
The performance overhead depends on the frequency of execution involving secret values and
the program’s degree of instruction-level parallelism (ILP), ranging from 0% to 45% depending
on the scenario.

A related approach [23] further emphasises the hardware-software contract by formalising
microarchitectural behaviour to provide the software with predictable execution properties. In
this work, speculation is restricted within a specific security domain, whose scope depends on
the implementation.

Formal methods targeting hardware design show great promise. However, they remain
difficult to scale to the complexity of a realistic OoO processor.

8.3 Compiler-Based Solutions
8.3.1 Retpoline

Retpoline [103] is a software-based countermeasure that transforms indirect jumps into a
gadget that captures speculative execution behaviour.

Listing 8.1 Assembly code for the Retpoline countermeasure, a gadget that replaces an indirect
jump.

jr a0; →

jal set_up_target; # ra <- (capture_spec)
capture_spec:

pause;
j capture_spec;

set_up_target:
mv ra, a0; # ra <- a0
ret; # jr ra

In listing 8.1, the indirect jump is replaced with a gadget that traps speculative execution
in the capture_spec: loop using the RSB predictor.

8.3 Compiler-Based Solutions 54

Listing 8.2 Pseudocode for Address-Based SLH.
beq a, b, ...
xor diff, a, b // diff = 0 if beq is taken
sltiu c, diff, 1 // c = 1 if diff = 0, 0 otherwise
sub mask, zero, c // mask = -c

and mask_add, add, mask
load secret, 0(mask_add)

The gadget functions as follows:
1. The jump destination is assumed to be stored in the a0 register.
2. The first instruction, jal , jumps to set_up_target: and stores the address of capture_spec:

in the ra register (this is the and link operation). Consequently, the RSB pushes the
address of capture_spec: onto the stack.

3. The value of a0 is moved into ra .
4. The ret instruction is an alias for jalr x0, ra , causing execution to jump to the

address stored in ra (which now holds a0). However, the RSB predictor speculates that
this instruction will jump to capture_spec:.

5. As a result, speculative execution is ”trapped” in capture_spec: until speculation
resolves and reveals the correct jump to a0 .

This technique specifically mitigates Spectre-RSB but comes at a significant performance
cost. A more security-effective alternative would be to eliminate the RSB entirely, but keeping
the performance overhead.

8.3.2 Speculative Load Hardening (SLH)
SLH is a technique implemented in LLVM [87] for x86, designed to prevent the leakage of
secrets through speculative load instructions associated with branch direction speculation. In
other words, SLH is primarily effective against Spectre-BHT.

The key idea is to establish a dependency between the predicate of a branch condition
and either the address rs1 or the result rd of a load rd, 0(rs1) . Let c be the boolean
predicate associated with one or more branching instructions that determine whether a load
is executed. Since branches can be nested, this predicate must be carried forward and updated
for each branching instruction. Thus, the value of c indicates whether execution is speculative
or not.

For Spectre-PHT, however, c does not solely determine whether the load is executed
transiently; an instruction may still be speculatively executed even if c = f alse. Nonetheless,
it is possible to create a mask m dependent on the branch predicate:

m =

{
b11...111 if c = true
b00...000 if c = f alse

From this, two countermeasures can be derived:
1. Address Hardening: Applying the mask to the load address, as shown in listing 8.2,

also known as LLVM-aSLH.
2. Value Hardening: Applying the mask to the result of the load , also known as LLVM-

vSLH. In the event of misprediction, the secret value becomes unusable, as demonstrated
in listing 8.3.

A variation of this mitigation, SLH-IP, extends the approach inter-procedurally, ensuring
that the predicate is maintained across function calls by storing it in the stack. This variation

8.4 Speculation Barriers for RISC-V 55

Listing 8.3 Variant for Value Hardening.
//as before...
load secret, 0(add)
and masked_secret, secret, mask

improves precision, providing a better security/performance trade-off.
SLH is a crucial countermeasure against Spectre-PHT, but its effectiveness is limited. On

one hand, it does not mitigate other Spectre variants. On the other hand, its performance
overhead appears prohibitive, with a reported best-case slowdown of 29% [87]. On a RISC-V
core, we achieved a ≈ 45% slowdown with our reproduced implementation.

To formalise the approach further, Patrignani et al. [48] introduced strong speculative load
hardening (SSLH), which aims to protect all load instructions, whereas LLVM-SLH does not
safeguard load instructions with addresses known at compile time.

This technique has recently been analysed and refined in [79], leading to the development
of Ultimate SLH. Ultimate SLH enhances protection by addressing variable-timing instructions,
which could be exploited as covert channels.

These studies have identified vulnerabilities in LLVM’s SLH implementation while proving
the correctness of their own implementations.

A first RISC-V implementation of SLH was proposed by Moein Ghaniyoun [92] and later
improved by Thomas Rubiano [97] as part of our work on speculation barriers.

However, these approaches face two critical limitations:
1. Register Allocation Issues: The register allocation phase is not adequately consid-

ered. Predicate management may introduce additional load instructions due to register
spilling, a behaviour we have observed in practice that introduces new unprotected load .

2. Microarchitectural Control Flow Complexity: Proofs concerning the architectural
control flow do not directly translate into guarantees for microarchitectural control flow.

Our experiments confirm these limitations. For example, Figure 8.2 shows that the SLH
countermeasure still permits numerous Spectre-PHT gadgets, even though the mitigation is
explicitly designed to prevent them. In this case, most of the residual gadgets result from
register spilling.

8.3.3 Bounds Clipping
An efficient technique to prevent a load instruction from reading arbitrary data is to enforce
the bounds of the corresponding address. This technique is known as bounds clipping.

If the bounds of the address values accessed by a particular load are known, it is possible
to add bound clipping instructions (saturating min and max) that ensure the address value
remains within the bounds. Even if the value is speculated incorrectly, the bounds ensure that
no confidential data can be read.

Bounds clipping, by not interfering with speculation, is expected to be performance-efficient.
However, as far as I know, there is no dedicated study on the associated performance and
security merits. In particular, what proportion of load instructions can be efficiently bounded?

8.4 Speculation Barriers for RISC-V

“fence.spec: exploring speculation barriers for RISC-V selective speculation”
Herinomena Andrianatrehina, Ronan Lashermes, Joseph Paturel, Simon Rokicki, and
Thomas Rubiano. under submission [5]

https://ronan.lashermes.0nline.fr/papers/fence-spec.pdf

8.4 Speculation Barriers for RISC-V 56

This section presents results from the PhD Thesis of Herinomena Andrianatrehina that
I advise.

When reviewing the literature, one can only notice discrepancies in the reported figures of
merit (also discussed in [51]).

These inconsistencies can be attributed to several factors:
1. The significant impact of test environments on the results of certain mitigation measures

(e.g., the benchmarks used). Solutions do not offer protection against the same Spectre
variants.

2. The difficulty of openly experimenting on speculative microarchitectures, as researchers
must choose between using simplified gem5 models of the most complex x86 cores or
precise models of simpler RISC-V cores.

3. Differing threat models and initial assumptions make it difficult to compare solutions
that protect against different kinds of threats and assume varying levels of knowledge
about which data requires protection.

Thus, although a variety of mitigation approaches have been proposed to address Spectre, the
lack of reproducibility has made it challenging to accurately assess and compare the effective-
ness of each solution.

To compare solutions, we designed and implemented speculation barriers for RISC-V. They
offer a flexible way to compare different solutions by modifying the barrier placement policy. We
created an environment for exploring and comparing different implementations of the selective
speculation approach in a realistic testing environment: we vary the semantics of the barrier
instructions, their placement policies, and their hardware implementations.

To compare the various countermeasures, we introduce a quantitative security metric. A
post-analysis module gathers execution traces and detects any Spectre gadgets, which refer
to sequences of instructions and microarchitectural states that could be used to mount Spectre
attacks. The number of gadgets found serves as a measure of the difficulty for an attacker to
mount a Spectre attack but does not prove that it is impossible to do so.

!

The microarchitectural control flow is arbitrary, so any speculation barrier can
be bypassed in speculative mode. From the start, we know that speculation
barriers cannot be a perfect solution! However, their flexibility makes them
well-suited for quickly exploring many combinations of semantics, placement,
and hardware implementations. Any promising results could then be directly
applied to the microarchitecture, eliminating the need for speculation barrier
instructions.

8.4.1 Fences Semantics
The goal of a speculation barrier is to mark a point in the execution flow where architectural
and microarchitectural states converge (both register values and PC). To achieve this, we need
to resolve the speculative nature of the instructions currently being executed.

The semantics of the x86 speculation barrier are given in definition 8.2.

Definition 8.2 - x86 LFENCE semantics (Felix Cloutier webpage)

LFENCE does not execute until all prior instructions have completed locally, and no later
instruction begins execution until LFENCE completes. Personal note: I believe “prior”
and “later” can be interpreted as referring to program order.

We found the LFENCE semantics to be too restrictive, as it stalls all instructions, even in

https://www.felixcloutier.com/x86/lfence

8.4 Speculation Barriers for RISC-V 57

cases where it is unnecessary. What if two independent execution paths could proceed, but
only one needed to restrict speculation?

To explore whether we could extract more performance, we defined a speculation barrier
called fence.spec that has explicit dependencies on registers.

Definition 8.3 - Our own RISC-V fence.spec rd, rs1 speculation barrier

We define a new fence.spec rd, rs1 instruction with the following properties:
1. The barrier cannot terminate execution unless it is certain that it will eventually

commit. It cannot continue while speculative.
2. The barrier depends on register rs1 , as if reading the value. If rs1 = x0 , then

it depends on all registers.
3. The barrier “touches” register rd , as if writing to it, but without modifying the

value. Therefore, later instructions that depend on this register also depend on
the barrier. If rd = x0 , then it touches all registers.

These semantics explicitly handle dependencies without relying on program order.

We also define a serialisation barrier, fence.ser rd, rs1 , similar to fence.spec , but
only with rules 2 and 3. It can execute speculatively.

These semantics are explored in two forms: targeted, using fence.spec xR, xR (where
xR is any register different from x0), which targets a relevant register depending on the policy;
or global, using fence.spec.all as the pseudo-instruction for fence.spec x0, x0 .

8.4.2 Placement Policies
Defining speculation barriers is the easy part; the challenge lies in determining where and when
to apply them. In particular, if a secret exists in the address space, any load instruction can
access it speculatively.

Therefore, mitigations must be applied broadly to the entire address space containing a
secret, independently of whether the actual program may or may not access this secret.

Speculation barriers cannot be evaluated independently from their placement policy, which
defines a security policy.

8.4.2.1 In the Linux Kernel
The Linux kernel documentation [102] explains the mitigations used in the kernel. The actual
mitigations enabled depend on the hardware, as the kernel attempts to rely on hardware coun-
termeasures whenever possible and falls back to compiler-based solutions for older hardware.

The kernel prioritises IBRS, IBPB, and STIBP when available, falling back to Retpoline
and placing LFENCE instructions if these are unavailable.

Additionally, the following mechanisms may be used:
• Return stack buffer (RSB) Flushing: To protect against RSB underflow attacks, the

kernel flushes the RSB on context switches and VM exits.
• Branch history buffer (BHB) Clearing: To mitigate BHI attacks, a sequence is imple-

mented to clear the branch history buffer (BHB).
• nospec Accessor Macros: These macros prevent speculative execution from accessing

data pointers influenced by user inputs by enforcing bounds clipping and other security
validations during speculative execution. The use of nospec macros ensures that data
crossing privilege level boundaries, particularly arguments to system calls (syscalls), are
sanitised.

Notably, the use of SLH is not mentioned.
The mitigations for Arm cores are not discussed in this document, but it can be inferred

https://docs.kernel.org/admin-guide/hw-vuln/spectre.html
sec:bounds_clipping

8.4 Speculation Barriers for RISC-V 58

that they are similar, replacing LFENCE with SB , for example.
These mitigations may effectively prevent the most dangerous exploits that can influence

kernel microarchitectural control flow from user space (also known as Branch History Injection).
However, these mitigations are not principled; they address specific exploits rather than the
underlying vulnerabilities.

8.4.2.2 In our benchmarks
In our experiments, we evaluated three policies:

1. before_load: A speculation barrier is placed before all load instructions, targeting the
address register. This policy prevents all speculative load operations.

2. after_load: A barrier is placed after all load instructions, targeting the loaded value.
This policy prevents the use of all speculatively loaded values.

3. dependency: A barrier is placed after branch instructions, targeting the condition of the
branch. The compiler is responsible for optimising unnecessary barriers (e.g., duplicated
conditions).

A special policy called nop involves placing a nop instruction before all load instructions.
This allows us to evaluate the cost of executing any instruction and compare it with the cost
of running speculation barriers.

8.4.3 Hardware implementations
Our implementations are variations of the NaxRiscv OoO core, written in SpinalHDL, a variant
of CHISEL.

8.4.3.1 Adding dependencies
The core manages dependencies in the Issue Queue, which contains the instructions waiting for
execution. A data structure records, for each instruction, the indices of all other instructions
it depends on.

When an instruction has no remaining active dependencies, it becomes eligible for execution,
which in turn unblocks other dependent instructions.

Our fences, which have dependencies on rd and rs1 different from x0 , do not require
adaptation to fit into this scheme. However, an additional fence_all flag is assigned to all
instructions in the Issue Queue, with the flag set to 1 if and only if rd = x0 .

This mechanism applies to both fence.spec and fence.ser .

8.4.3.2 Stalling while in speculative mode
There are several possibilities for implementing the barriers in hardware to stall execution when
in speculative mode. We investigate three implementations.

1. Execution-stall: A fence.spec instruction can only finish execution when it is the
next instruction to be committed.

2. Dispatch-stall: A fence.spec instruction can only be dispatched to an execution unit
when it is sure to commit. This means either no instructions are left to be executed, or
they are themselves sure to commit.

3. Operands-stall: The fence.spec rd, rs1 instruction can be dispatched as soon as
the instruction producing rs1 has committed. Note that this behaviour does not strictly
follow our semantics, since fence.spec may be speculatively executed in this case.

The idea is to compare whether stalling earlier offers different security/performance trade-
offs.

8.4 Speculation Barriers for RISC-V 59

8.4.4 Our results
To measure performance, we execute the Embench benchmarking suite for all configurations.
The benchmarks are calibrated to execute in approximately 5M instructions.

We define a configuration as a specific [semantics]_[policy]-[hardware] combination.
For example, the nop_before_load-execute configuration involves executing our bench-
marks by placing a nop before all load instructions with the execution stall hardware
implementation.

ed
n

qrd
uin

o

nsi
chn

eu

sta
tem

ate slre
minv

er
nb

od
y

wikis
ort st

hu
ffb

en
ch

cub
ic

matm
ult

-in
t

ah
a-m

on
t64

md5
sum

pri
meco

un
t

ne
ttle

-ae
s

ne
ttle

-sh
a2

56 ud

pic
ojp

eg

sgl
ib-

com
bin

ed
crc

32
tar

fin
d

Per
 cla

ss
ge

om
ea

n

Com
bin

ed
 ge

om
ea

n

Benchmarks

0

1

2

3

4

5

6

In
st

ru
ct

io
n

co
un

t

1e6 Instruction Mix Comparison Across Benchmarks - Policy = none-execute
Instruction Classes

Branches (Fetch)
Branches (Commit)
Loads (Fetch)
Loads (Commit)
Stores (Fetch)
Stores (Commit)
Direct jumps (Fetch)
Direct jumps (Commit)
Indirect jumps (Fetch)
Indirect jumps (Commit)
Arithmetics (Fetch)
Arithmetics (Commit)
Fences (Fetch)
Fences (Commit)
Floating arithmetics (Fetch)
Floating arithmetics (Commit)
Others (Fetch)
Others (Commit)

Figure 8.1: Instruction mixes for all benchmarks for the none-execute configuration.

We execute our benchmarks using the Verilator simulator. Our simulator generates execu-
tion traces in a custom format, which allows for a detailed analysis of execution. For example,
Figure 8.1 shows the instruction mix for each benchmark, for both fetched and committed
instructions.

8.4.4.1 How to measure security
A major challenge in mitigating transient attacks lies in evaluating the security of the proposed
solution. Most works in the literature present a set of attacks and demonstrate that these
are effectively thwarted by the solution. However, what happens if a new attack is discovered
afterward? What if the specific implementation details of the tested attack mean that the
mitigation does not work on other hardware?

In our work, we chose to focus on vulnerabilities rather than exploits. Exploits are
implementation-dependent, whereas a vulnerability, i.e., the potential for an exploit, is more
general.

More specifically, we identify a Spectre gadget as a sequence of three events:
1. A misspeculation window initiated by a speculation-triggering instruction,
2. a secret acquisition instruction (a load) within the window,
3. the disclosure of this secret within the same window. Disclosure occurs in our case by

taint-tracking the potential secret to one of the following:
• a load using the secret as an address,
• a store using the secret as either an address or a value,
• a branch using the secret as a condition,
• a jalr using the secret as a jump destination.

https://github.com/embench/embench-iot
https://github.com/verilator/verilator

8.4 Speculation Barriers for RISC-V 60

An example of such a Spectre gadget is shown in Figure 7.1.
Our security measure is therefore ad hoc: we count the number of occurrences of Spectre

gadgets in the execution traces of the benchmarks. If no gadgets are found in the traces for a
specific configuration, we conclude that it will be difficult for an attacker to achieve a Spectre
attack. However, this does not guarantee impossibility, as it cannot be formally demonstrated
that gadgets are absent.

Since access to the execution traces is available, the gadgets found can be analysed. For
instance, in Figure 8.2, we present the number of gadgets for all configurations, categorised
by the cause of the misspeculation window.

no
ne

-ex
ec

ut
e

no
p_

be
for

e_
loa

d-
ex

ec
ut

e

slh
-ex

ec
ut

e

slh
_ip

-ex
ec

ut
e

sp
ec

_co
nd

-ex
ec

ut
e

sp
ec

_co
nd

_ip
-ex

ec
ut

e

se
r_b

efo
re

_lo
ad

-ex
ec

ut
e

se
r_b

efo
re

_lo
ad

-op
er

an
ds

se
ra

ll_
be

for
e_

loa
d-

dis
pa

tch

se
ra

ll_
be

for
e_

loa
d-

op
er

an
ds

se
rd

ep
_b

efo
re

_lo
ad

-d
isp

at
ch

se
rd

ep
_b

efo
re

_lo
ad

-ex
ec

ut
e

se
rd

ep
_b

efo
re

_lo
ad

-op
er

an
ds

se
rd

ep
op

t_b
efo

re
_lo

ad
-d

isp
at

ch

sp
ec

_a
fte

r_l
oa

d-
dis

pa
tch

sp
ec

_a
fte

r_l
oa

d-
ex

ec
ut

e

sp
ec

_b
efo

re
_lo

ad
-d

isp
at

ch

sp
ec

_b
efo

re
_lo

ad
-op

er
an

ds

sp
ec

_b
efo

re
_lo

ad
sto

re
-op

er
an

ds

sp
ec

all
_b

efo
re

_lo
ad

-d
isp

at
ch

sp
ec

all
_b

efo
re

_lo
ad

-op
er

an
ds

Policy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
ti

on

524 437 100 75 112 36 375 434 56 55 361 313 361 459 0 0 0 460 426 1 55

Proportion of Gadgets by Source for Each Policy

Source
PHT
BTB
RSB
STL
Other

Figure 8.2: The number and proportions of Spectre gadgets categorised by their misspeculation
sources per configuration.

Our results indicate that the majority (≈ 85%) of gadgets are caused by a mispredicted
branch direction in our benchmarks.
SLH is an interesting case , where most of the PHT variants are removed but not all.
Since SLH specifically targets branch direction predictions, and some implementations have
been proven correct [48, 79], we would have expected a perfect solution with no PHT gadgets
found.

However, our SLH implementation has not been proven correct, even if it was inspired
by [79]. We discovered that the predicate is often stored in memory, in the stack, because
of the inter-procedural implementation or simply because of register spilling during register
allocation. Indeed, it seems that the proofs proposed in the literature being performed on a
static single assignment (SSA) representation of the program, the security guarantees cannot
be transferred to the final binary after register allocation.

It can be seen in Figure 8.2 that some policies are indeed secure. However, security should
be evaluated in light of the corresponding performance drop.

8.4.4.2 Security versus Performance Trade-off
We plot the security (ordinate) and performance (abscissa) results for all configurations in
Figure 8.3. The raw results are indicated in Table 8.2, along with a description of the placement
policies.

From Figure 8.3, we observe a Pareto front emerging. Unfortunately, the performance of
the best secure configuration spec_after_load-execute, with 0 gadgets found, is equivalent

8.4 Speculation Barriers for RISC-V 61

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Traces Duration (Ratio to none-execute)

0.0

0.2

0.4

0.6

0.8

1.0
G

ad
ge

ts
 C

ou
nt

 (
Ra

ti
o

to
 n

on
e-

ex
ec

ut
e)

none-execute

nop_before_load-execute

ser_before_load-execute

ser_before_load-operands

serall_before_load-dispatch serall_before_load-operands

serdep_before_load-dispatch

serdep_before_load-execute

serdep_before_load-operands

slh-execute

slh_ip-execute

spec_after_load-dispatch
spec_after_load-execute

spec_before_load-dispatch

spec_before_load-operands

spec_before_loadstore-operands

spec_cond-execute

spec_cond_ip-execute

specall_before_load-dispatch

specall_before_load-operands

in-order (estimated)

Security vs. Duration

Figure 8.3: Plotting the security/performance trade-off. Security is the ratio to the
none-execute gadget count, performance is the ratio to the none-execute geomean trace
duration. The corresponding raw data is shown in Table 8.2.

to the performance of an in-order core, according to [44], with a ≈ 80% performance overhead.
It appears that the ability to speculatively execute load instructions justifies most of

the out-of-order advantage in our case. However, even allowing speculative load with the
spec_after_load policy, blocking the speculative usage of the value read, is not sufficient.

Table 8.2: List of evaluated policies and results

Gadget counts Benchmark duration
geomean (hot cycles)

Policy name Description execute dispatch operands execute dispatch operands
none No policy applied (baseline). 514 3.6 M
nop_before_load Insert nop instruction before each load . 430 3.8 M
ser_before_load Insert fence.ser rA, rA instruction before

each load rB, offset(rA) .
369 428 428 3.9 M 3.8 M 3.8 M

serall_before_load Insert fence.ser x0, x0 before each load . 16 55 55 7.0 M 5.8 M 5.8 M
serdep_before_load Insert fence.ser rB, rA with rB used as ad-

dress by the following load and rA register
from the “most dominant branching instruction
operands”. It is a naive approach to add serializa-
tion between loads and most dominant branching
instruction if there is one.

306 355 355 4.3 M 4.0 M 4.0 M

slh SLH implementation for RISCV. 100 5.1 M
slh_ip SLH implementation with inter-procedural predi-

cate transfer via stack pointer.
75 5.3 M

spec_after_load Insert fence.spec rB, rB instruction after
each load rB, offset(rA) .

0 0 0 6.5 M 6.9 M 6.6 M

spec_before_load Insert fence.spec rA, rA instruction before
each load rB, offset(rA) .

0 0 451 7.4 M 7.4 M 5.4 M

spec_before_loadstore Insert fence.spec rA, rA instruction
before each load rB, offset(rA) or
store rB, offset(rA) .

3 3 418 8.1 M 8.0 M 5.6 M

spec_cond Insert fence.cond rA at beginning of each basic
block that contains load . It takes as operand rA ,
an always updated predicate computed as in slh
policy.

108 5.2 M

spec_cond_ip As spec_cond with inter-procedural predicate
transfer.

36 7.0 M

specall_before_load Insert fence.spec x0, x0 before each load . 0 1 55 8.4 M 8.2 M 5.8 M

Gadget counts in Table 8.2 are the same ones as used to generate Figure 8.3 but different than in Figure 8.2. Indeed, in Figure 8.2 two gadgets
occuring at the same acquistion address are counted twice if they have differente speculation sources, but are counted once in Table 8.2 and Figure 8.3.
Performance is measured as the geometric mean of the number of hot cycles (after the warmup) for the benchmark suite.

8.4 Speculation Barriers for RISC-V 63

8.4.5 Concluding on Speculation Barriers and Spectre Countermeasures
Our results are mostly negative: we were unable to prevent all Spectre gadgets without an
unacceptable performance overhead. The fact that a Pareto front emerges, despite varying
our countermeasures in widely different directions (semantics, placement, and hardware imple-
mentation), seems to indicate a hard limit of speculation barriers.

However, our results only apply to our implementations, variants of the same NaxRiscv
core. It is possible that we would get different results with a different core. I conjecture that
a wider core, able to issue 4 instructions or more per cycle (instead of 2 in our case) would
offer better results with our speculation barriers by providing more reordering opportunities.

I do not believe that choosing between security and the performance of an OoO execution
is an acceptable choice. Therefore, we may need to revisit our assumptions. In particular, we
assume that the microarchitecture has no way to determine if data is confidential and thus
must not be executed speculatively. This reflects the capabilities of today’s microarchitectures.
However, it seems that the way forward is to change this assumption and support confidential
data in the microarchitecture, with a modification of the ISA. But this approach would be
radical, as it would make developers responsible for the annotation of confidential data, which
is not an easy task. This direction of reasoning is explored in chapter 10.

9. Concluding on Microarchitectural Attacks

Covert channels and transient attacks have been described in chapters 5 and 7 respectively,
and corresponding countermeasures have been proposed in chapters 6 and 8.

Covert channels are inherent to the design of microarchitectures: any microarchitectural
state can potentially support a covert channel. Mitigating covert channels is achieved both
at the microarchitectural level, through state splitting, and at the architectural level, with
dedicated instructions hinting at security domain switches.

The cost of covert channel mitigation makes it suitable only for coarse-grained security
domains. In particular, speculative execution can still pose a threat through transient attacks.
Our exploration of mitigation strategies against transient attacks has been fruitless. Unfor-
tunately, as of today, solutions that can be implemented without causing an unacceptable
performance drop remain far from perfect.

My recommendations for designers

To design more secure cores today:
• Design a microarchitecture that limits the possibilities for covert channels: parti-

tion state where relevant. In particular, you must split state per privilege level
for branch predictors to prevent BTI and BHI. Additionally, optimise for a deep
and fast flush: for example, write-through caches should be quicker to flush than
write-back caches.

• Speculation barriers seem to be a dead end. Instead, focus on hardening your
program with bounds clipping. Compilers should be improved to insert these
automatically in most cases.

These recommendations will not make your core perfectly secure, but they will make it
significantly harder for attackers to develop actual exploits. The real performance overhead
on realistic cores is largely unknown since the protection on commercial cores is minimal. In
the long term, designers should consider more radical approaches, such as those discussed in
Part III.

64

IIIRadical New Core
Designs for Secu-
rity

10 Architectural Secret Values 67
10.1 The Semantics of Architectural Secret Values 67
10.2 Dynamic Tracking of Architectural Secrets in Memory

69
10.3 Limitation: Against Hardware Secrets 70
10.4 Conclusion . 71

11 Forbidding Forward Indirect Jumps 72
11.1 Forward and Backward Indirect Jumps 73
11.2 The Case for Forbidding Forward Indirect Jumps . . 73
11.3 Stronger Security Guarantees for Backward Indirect

Jumps . 77
11.4 Forward Indirect Jumps as a Security Boundary . . 77
11.5 Compiler Support . 78
11.6 Other Implications . 78

12 Instruction Set Randomization for Execu-
tion Integrity . 79

12.1 Lockstep Processors . 79
12.2 Instruction Set Randomization 80
12.3 The Application Lifecycle 83
12.4 The Limits of Control-Flow Integrity 84
12.5 Conclusion . 85

13 Security Validation in Hardware 88
13.1 Fetch and Decode . 88
13.2 Security Validation is Speculative 90

14 Concluding on Radical Designs 92

65

66

In this part, I explore how to design secure cores without being constrained by existing
microarchitectural designs. Ideas that are not feasible for today’s cores are freely explored to
assess their potential for enhancing security.

This exploratory part discusses unproven ideas, with designs that may not yet have reached
the proof-of-concept stage. As a consequence, most of these propositions have not attained
the scientific maturity required for publication and should be considered with the correspond-
ing precautions. I take this opportunity to present a personal vision of future-proof designs,
contributing to a scientific debate that I believe is necessary.

Chapter 10 is the continuation of Part II: if we are not limited by following an existing
ISA, what could we do to improve the security of our microarchitecture, particularly concerning
covert channels, transient attacks, and other security threats? For that purpose, we propose
modifying the ISA to explicitly introduce the notion of confidential data. //

Chapters 11, 12 and 13 focus on the security of microcontrollers with the following char-
acteristics:

• Compared to Part II, they must withstand a stronger threat model that includes physical
attacks.

• They lack an MMU, reducing the role and protection offered by OSs through the MMU.
However, such chips typically include an memory protection unit (MPU).

• These devices typically operate with a fixed software image: no additional software is
installed after deployment, except through a firmware update. I consider that over-the-
air (OTA) updates are not possible. This is an editorial simplification to avoid delving
into the complexities of secure boot and OTA firmware update implementations, which
are beyond the scope of this discussion.

• The threat model primarily focuses on physical attacks and fault injection in particular,
as described in subsection 3.2.2.

In accordance with Kerckhoffs’ principle [81], which states that a secure system must be
designed under the assumption that the adversary knows its inner workings, I aim to ensure
the following.

• The integrity of the program and its execution: the adversary must not be able to
tamper with the program while it is running. This implies that we should also strive to
ensure the

• availability of the system whenever possible. However, neither the confidentiality of the
core nor the program should be a requirement.

• The integrity and confidentiality of data. In certain scenarios, data confidentiality takes
precedence over system availability. For example, a banking smartcard should erase its
cryptographic keys upon detecting an attack.

Our core ISA will be based on the RV32I RISC-V specification but will diverge from it on
key aspects.

In detail, chapter 11 discusses the possibility of restricting the ISA expressiveness to improve
security by forbidding forward indirect jumps.

Chapter 12 presents instruction-set randomization (ISR) schemes and explains how they
can enhance integrity guarantees compared to lockstep processors.

Finally, chapter 13 develops these ideas to envision what a microarchitecture built upon
the concepts from the previous chapters would look like.

10. Architectural Secret Values

This section presents ideas from the PhD Thesis of Herinomena Andrianatrehina that I
advise.

Confidentiality is the property of keeping data accessible only to legitimate entities. Sym-
metric encryption provides a simple (though somewhat circular) answer to the question of
legitimacy: legitimate entities are those who legitimately know the secret key. However, in the
microarchitecture, distinguishing between legitimate and illegitimate entities is not straightfor-
ward. Another way to frame the issue is: against whom are we trying to protect our data?

There is no concept of secrecy within the RISC-V microarchitecture. In state-of-the-art
designs, confidential data such as cryptographic keys should be handled by a dedicated copro-
cessor.

1. To isolate the keys from the rest of the system. If the key leaves the coprocessor, it must
be encrypted to prevent any information leak.

2. To use dedicated and optimised circuits for key operations, preventing leakage (e.g.,
through timing or power consumption analysis).

This chapter explores how to design a chip that can natively handle confidential data without
requiring a coprocessor.

To achieve this, the concept of architectural secret values must be introduced.
Architectural secret values are data that must remain confidential within a security domain,

here understood as a combination of address space, privilege level, and virtual machine. In
particular, these values must not leak to another application executing on the same chip
or to an attacker capable of measuring execution timings via observation attacks (timing,
electromagnetic emissions, power consumption, etc.).

Architectural secret values are mapped to hardware registers that can now be either confi-
dential or public.

The semantics of architectural secret values is explored in section 10.1, whereas how the
confidentiality is propagated to memory is discussed in section 10.2.

10.1 The Semantics of Architectural Secret Values
10.1.1 Hardware Confidential Registers

The concept of hardware confidential registers is central to the proposed scheme for managing
architectural secret values. These registers are designed to inherently manage ‘static’ secrets,

67

10.1 The Semantics of Architectural Secret Values 68

since the confidentiality status is encoded directly in the instruction in the register index. By
designating certain registers as confidential, the hardware can enforce strict rules on how these
secrets are accessed and manipulated, thereby mitigating the risk of unauthorised access or
leakage.

Definition 10.1 - Confidential Registers

The 32 integer general purpose registers (GPRs) can now be either public or
confidential. We define a new CSR called confidential.regs , where the lowest
32 bits designate the confidentiality status of the corresponding register. For example,
the i-th bit is set to 1 if register xi is confidential and 0 if it is public.

Hardware behaviour must adapt to the confidentiality status of a register, considering
both cache-based and cacheless architectures. Confidential registers must not be used in the
following cases:

• As an operand of a branch .
• As an operand of an indirect jump (jalr).
• As an operand of a variable-time instruction (this depends on the hardware implementa-

tion).
• As the address of a load .
• As the address of a store .
• load instructions that write to a confidential register must be non-speculative (i.e.,

guaranteed to commit).
Failure to comply with these conditions must trigger a hardware security exception. Com-

pilers should generate only valid programs that adhere to these new semantics.
Additional possibilities exist (some discussed in section 10.2):

• If the value being stored is confidential, it must be encrypted (requiring a key manage-
ment mechanism).

• If a load destination register is confidential, the data must be decrypted accordingly.
• Writing to a confidential register may require an extra clock cycle, during which a random

value is first written into the register before the actual value is stored. This prevents the
mask overwriting issue that could leak secrets in masked schemes.

• Dedicated execution units could handle confidential register values, implementing mask-
ing techniques to reduce physical leakage.

In this scheme, the hardware is not responsible for tracking the confidentiality property
dynamically. It is solely the compiler’s responsibility to assign confidential registers for confi-
dential data.

This approach allows static analysis to easily track declassification, defined as any instruc-
tion that has at least one confidential operand but a non-confidential destination register. The
compiler may ask for explicit declassification in the source code, to be able to prove that no
accidental declassification is possible.

Writing to the confidential.regs register should be restricted to machine or supervisor
mode and remain coarse-grained. For example, if each function begins with a preamble writing
to confidential.regs , an attacker could potentially manipulate microarchitectural control
flow to untaint a register. One possible solution is to make confidential.regs read-only,
with confidential registers fixed and determined by hardware.

10.1.2 Imagining the Workflow
I assume that source code is annotated with confidentiality semantics. For example, a confidential
keyword could be added during variable declaration: confidential int key. The confidential
keyword serves as syntactic sugar for the corresponding variable attribute.

10.2 Dynamic Tracking of Architectural Secrets in Memory 69

In any application, it is the developer’s responsibility to annotate variables and memory,
determining which values are secret and which are not.

With this information, the compiler ensures that cryptographic keys and certain interme-
diate values are only assigned to confidential registers. Register spilling must be handled
separately for confidential and non-confidential registers, with additional constraints for confi-
dential registers, as outlined in section 10.2.

10.2 Dynamic Tracking of Architectural Secrets in Memory
10.2.1 Issues with Current Mechanisms

Registers alone cannot be the sole target of the confidentiality attribute. Sometimes, secrets
must be stored in random-access memory (RAM):

• For secrets in a program that persist longer than a few instructions.
• For register spilling when handling a large amount of confidential data.
• For sharing secrets between programs.
In the RISC-V ecosystem, there are already simple modifications that allow declaring a

memory range as confidential.
1. The MMU can be used to add a new confidential property to a memory page. This

solution has been explored in [59], for example.
2. The PMP can also be modified to add the confidential tag to a physical memory

range.
The issue with both of these solutions is that the confidential property is not inherently

tied to the secret data but rather to a subjective view of memory. Nothing prevents the OS
from creating a new page mapping to secret data without the confidential property. In
other words, data confidentiality depends on the memory mapping configuration, an access
control mechanism, rather than on the data itself. PMP offers a slight improvement since it
is tied to physical memory. However, since the PMP configuration is unique per core, another
core in a multicore system could access the same data without confidentiality restrictions.

In my opinion, a new approach is therefore required. In [53], the authors identify this same
issue and propose a memory tracking table (MTT), a structure tied to physical memory that
tags memory regions as confidential. The MMU must then check the MTT to propagate
memory attributes. In this model, only a hart in confidential mode can access confidential
data.

While this is an improvement, it introduces significant hardware complexity. Moreover,
confidential remains an access control property rather than an inherent data property.

Another issue with architectural secret values arises from transient attacks. If a load
instruction speculatively addresses a secret value in memory with a public destination regis-
ter, the secret must not be revealed. This scenario may violate our new ISA, but since the
microarchitectural control flow is arbitrary, it can produce such cases.

10.2.2 Inline Memory Encryption
Instead of relying on access control, confidentiality can be enforced through encryption. The
ideal approach for this is inline memory encryption: a store instruction with a confidential
data register as the store value should automatically encrypt the data. Similarly, a load
instruction that writes to a confidential register should decrypt the corresponding data.

Inline memory encryption is not trivial. Few encryption modes allow direct access to and
decryption of arbitrary locations in ciphertext [96]. The NIST recommends the XTS-AES
scheme for this use case [90], as illustrated in Figure 10.1. In some ways, XTS is similar to
ECB mode in that it allows independent encryption of data blocks, but without the same
security vulnerabilities.

10.3 Limitation: Against Hardware Secrets 70

Ek2 Ek1x aaddress

addressIV plaintext

ciphertext

Figure 10.1: The XTS-AES scheme:. The complete key is split into two 128-bit parts, k1 and
k2, used by the two AES ciphers Ek1 and Ek2. A “location-dependent” intermediate value is
computed from a random initialisation vector IV , the address of the data to encrypt, and a
constant a in GF(2128).

XTS mode is not perfect. In particular, encrypting the same 128-bit block at the same
address twice results in identical ciphertext.

Implementing inline memory encryption requires integration into the memory hierarchy,
presenting several challenges:

• Since only 128-bit blocks can be encrypted at a time, a sb (store byte) instruction
cannot be independently encrypted. The corresponding block must first be decrypted,
modified, and re-encrypted. Alternatively, more complex strategies may be employed.
For example, a different encryption scheme could be used in the L1D cache, while inline
memory encryption is applied only when data exits or enters the cache.

• What is the scope of the XTS key? It should not be shared across cores or across
processes. However, this necessitates a key management scheme to load and unload
keys at the appropriate times.

Inline memory encryption is particularly useful for handling a speculative load without
confidential registers and could speculatively address confidential data. In this case, since the
destination register is not confidential, the data would not be decrypted. Using the speculatively
loaded value would only leak the encrypted value, which does not reveal the secret itself.

10.3 Limitation: Against Hardware Secrets
It is unrealistic to expect that software execution of ciphers would be preferable in most
cases, since it gives less opportunity for the hardware to provide performance optimisations
and security hardening. For such use cases, a dedicated hardened coprocessor remains the
more secure and practical solution. However, many confidential data types (e.g., passwords,
sensitive personal data) are currently processed without sufficient hardware protection, which
must be improved.

The strongest argument against architectural secrets is not technical but economic. For
this approach to be effective, developers must be willing and able to annotate confidential

10.4 Conclusion 71

variables in their applications. Can they be trusted to do so when failing to annotate a secret
yields better performance, and the resulting security vulnerability may remain undiscovered for
years? I believe that the complexity of annotation would lead to the compartmentalisation
of secret-handling libraries, vetted by security professionals. Just as today’s mantra is “never
write your own cryptographic library,” in the future, it may become “never write your own
secret-handling library.” Ultimately, I would consider this a positive step for security.

The confidential.regs register provides an easy transition to cores supporting archi-
tectural secrets. Writing 0 to this register effectively disables architectural secrets, ensuring
backward compatibility with traditional cores.

10.4 Conclusion
Architectural secrets would mitigate architectural and microarchitectural timing channels and
prevent transient attacks such as Spectre from speculatively loading confidential data. They
allow efficient countermeasures but require modifications to both hardware and compilers for
proper support. By shifting the responsibility of annotating secrets to developers, architectural
secrets would reshape the software ecosystem. Fortunately, a writable confidential.regs
register ensures backward compatibility.

11. Forbidding Forward Indirect Jumps

To enhance security in microarchitecture design, this chapter delves into the concept of forbid-
ding forward indirect jumps. Indirect jumps, while versatile, introduce significant security risks
due to the possibility of unpredictable control flow. By replacing forward indirect jumps with
statically knowable dispatch mechanisms, I aim to mitigate these risks.

This chapter explores the rationale behind this approach, examines the use cases of indi-
rect jumps, and proposes alternative mechanisms to achieve secure and efficient control flow
management.

!
In this chapter, “jumps” are considered unconditional unless stated otherwise
for readability. Conditional jumps are referred to as “branches.” The RISC-V
terminology is followed in this regard.

Jumps consist of only two types of instructions.
• Direct jumps use the jal rd, offset instruction. The control flow jumps to a new

instruction at the address given by the PC plus the offset, which is encoded in the
instruction itself. The rd register is set to the address of the instruction following the
jump.

• Indirect jumps use the jalr rd, rs1 instruction. The control flow jumps to a new
instruction at the address given by the PC plus the value stored in the rs1 register. The
rd register is set to the address of the instruction following the jump.

Branches, which execute only when a condition is met, are conditional direct jumps because
the offset is encoded in the instruction. For example, beq rs1, rs2, offset jumps to the
instruction designated by the offset if the values in rs1 and rs2 are equal; otherwise, execution
continues with the next instruction. The RISC-V specification supports the following branch
conditions: beq (equal), bne (not equal), bge (greater or equal), blt (strictly less than),
and the unsigned variants bgeu and bltu .
The RISC-V specification does not support conditional indirect jumps.

In this chapter, I argue that to enhance security, forward indirect jumps should be replaced
with dispatch mechanisms. The following sections provide a detailed justification for this
approach.

72

11.1 Forward and Backward Indirect Jumps 73

Listing 11.1 Indirect jumps for calling and returning from a procedure.
call t0 // Call a procedure at the address stored in t0
// Pseudo-instruction for
// jalr ra, t0

ret // Return from a procedure
// Pseudo-instruction for
// jalr x0, ra

11.1 Forward and Backward Indirect Jumps
To justify eliminating forward indirect jumps, I must first define them and examine their use
cases.

11.1.1 Use Cases of Indirect Jumps
Indirect jumps serve different purposes.
Calls and Returns Their primary use is for calling and returning from procedures. A procedure
is typically a small sequence of instructions that may be reused in multiple contexts. This use
case is so common that the RISC-V ISA provides pseudo-instructions to simplify it.

Jumps that move forward in the CFG are referred to as forward jumps (or forward-edge
jumps) and those that move backward as backward jumps (or backward-edge jumps). In other
words, backward jumps return to a previous point in the execution sequence.

In practice, jalr x0, ra and jalr x0, t0 should be considered backward jumps accord-
ing to the RISC-V specification [104, section 2.5, which discusses when to update the RSB].
However, the notion of forward and backward jumps is not formally defined in the ISA. The
CFG only defines a partial order, meaning that forward and backward directions are not always
strictly determined. Additionally, it is possible (but unusual) to use x2 instead of x1 (= ra)
as the return address register, in which case the same edge in the CFG would not be classified
as a backward jump according to the RISC-V specification.
Dynamic Dispatch Another common use case is efficiently dispatching control flow to a list
of different destinations. A typical example is the use of virtual tables (vtables) in C++ as
illustrated in listing 11.2.

The method bPtr->show() calls the method of the Derived instance because it overrides
Base::show(). Under the hood, each class has a vtable, a table containing method addresses
corresponding to show() and tell() in each case.

11.2 The Case for Forbidding Forward Indirect Jumps

“A case against indirect jumps for secure programs” Alexandre Gonzalvez and
Ronan Lashermes. Proceedings of the 9th Workshop on Software Security, Pro-
tection, and Reverse Engineering 2019 [26]

“Recommendations for a radically secure ISA” Mathieu Escouteloup, Ronan
Lashermes, Jean-Louis Lanet, and Jacques Fournier. CARRV 2020-Workshop on
Computer Architecture Research with RISC-V [21]

https://ronan.lashermes.0nline.fr/papers/SSPREW2019.pdf
https://ronan.lashermes.0nline.fr/papers/CARRV2020.pdf

11.2 The Case for Forbidding Forward Indirect Jumps 74

Listing 11.2 Illustration of vtable usage in C++.
#include <iostream>
using namespace std;

class Base {
public:

virtual void show() { cout << "Base show" << endl; }
virtual void tell() { cout << "Base tell" << endl; }

};

class Derived : public Base { // Derived inherits from Base
public:

void show() override { cout << "Derived show" << endl; }
// 'tell' is not overridden and will use Base's implementation

};

int main() {
Base *bPtr;
Derived dObj;

bPtr = &dObj;
bPtr->show(); // Outputs: Derived show
bPtr->tell(); // Outputs: Base tell

return 0;
}

11.2.1 Indirect Jumps to Statically Unknown Destinations
Any call rs1 instruction (an alias for jalr ra, 0(rs1)) can be replaced with a direct
jump jal ra, address if the destination is known at compile time (statically). Indirect
jumps are only necessary when this is not the case.

Definition 11.1 - Opaque Predicate

An opaque predicate is a function that returns True or False. Only the function’s author
knows the inputs that yield True. Knowledge of the function’s software implementation
does not help others determine a True-yielding input, and the function must be evaluated
at runtime to determine the True/False output for any given input.
Intuitively, the function author knows the solution in advance, but it cannot be evaluated
by the compiler.

Exemple 11.1 - Unresolvable Jump

Opaque predicates can be used to make the destination of an indirect jump unresolvable
at compile time.
Let h be a cryptographically secure hash function (e.g., sha-256). Let pa be the public
jump destination address, known to all. The adversary selects a random key k large
enough to prevent brute-force attacks and computes hk = h(k). They also choose a

11.2 The Case for Forbidding Forward Indirect Jumps 75

secret jump destination address sa and conceal it by defining s = h(k+1)⊕ sa⊕ pa.
Now consider the following program:

int predicate(bigint x) {
return (x == hk)? 1 : 0;

}

bigint source = /* user input */;
bigint delta = predicate(source) * (h(source + 1) ^ s);
// opaque jump
goto pa ^ delta;

For all values of source not equal to k, the opaque jump goes to the public address pa.
However, if source = k, then

δ = 1 · (h(k+1)⊕ s) = h(k+1)⊕h(k+1)⊕ sa⊕ pa = sa⊕ pa.

Thus, the opaque jump redirects to the secret address.
Crucially, examining the program alone does not reveal k or the secret destination
address.

Example 11.1 demonstrates that an ISA allowing forward indirect jumps is not
equivalent to one that does not.

In practice, disallowing programs that contain unresolvable jumps seems beneficial for
security. Moreover, all jumps are always resolvable if the destination is known at compile time
and opaque predicates are not used.

There are, however, legitimate use cases for unresolvable jumps. For example, an OS
launching a new application must jump to its first instruction, which is dynamically placed in
memory. Similarly, executing a function from a plugin added to a base application requires an
unresolvable jump.

These use cases are generally irrelevant when considering typical microcontroller usage. In
this context, the firmware is compiled as a whole and then stored in the chip’s memory. Adding
a new application requires a firmware update, the alternative is usually a security nightmare
(e.g., the bootloader must ensure the authenticity of the loaded image). This is also a key
reason for the absence of an MMU in microcontrollers.

In conclusion, forward indirect jumps are unnecessary for most microcontroller use cases.
On the contrary, they introduce security concerns. Forbidding them would enable more precise
static analysis of the firmware.

11.2.2 Dispatch Gadgets Are Inefficient
Another common use of forward indirect jumps is dynamic dispatch. Since all possible dispatch
destinations are known at compile time, they can be replaced with direct jumps.

Indirect jumps can theoretically be replaced by direct jumps, as shown in listing 11.3, but
this approach is inefficient. A more optimised gadget than the one in listing 11.3 can be
constructed. Using a tree structure, the best gadgets require O(n) space (for n destinations)
and O(logn) instructions to execute, compared to O(1) for both space and execution time
with indirect jumps.

11.2 The Case for Forbidding Forward Indirect Jumps 76

Listing 11.3 An inefficient dispatch gadget that avoids indirect jumps.
jalr x0, a0
// could be replaced with

// destination [d0]
d0:

li t0, 0
bneq t0, a0, d1:
jal x0, d0

// destination [d1]
d1:

li t0, 1
bneq t0, a0, d2:
jal x0, d1

d2:
//...

11.2.3 A Dedicated Dispatch Instruction
Since all possible jump destinations must be encoded in an instruction, the best achievable
space complexity is O(n) for n destinations. However, the number of executed instructions
can be reduced to O(1) by introducing a dedicated dispatch rs1, bound instruction.

Definition 11.2 - New Dispatch Instruction

We define the dispatch rs1, bound instruction, where bound is an immediate
value. The dispatch instruction is followed by bound+1 words, each representing a
jump destination address. The rs1 register selects the destination address, using zero-
based indexing. For example, if rs1 equals 1, execution jumps to the second address
following the dispatch instruction. The value [rs1] must satisfy 0 ≤ [rs1] < bound ;
otherwise, the dispatch raises an exception.

dispatch a0, 5
.word address0
.word address1
.word address2
.word address3
.word address4

// rest of code

Each .word is SXLEN bits in size (typically 32 or 64 bits, cf subsection 2.1.2). The jump
addresses must be treated as instructions rather than data, meaning this memory must
be non-writable.

11.2.4 Considerations on the Hardware Implementation of Dispatch
The proposed dispatch instruction is less efficient than an indirect jump and more challenging
to implement in hardware. As far as I know, efficiently implementing such a dispatch instruction
in hardware remains an open problem. If a BTB is used, the destination address must be
associated with the dispatch instruction itself rather than the corresponding following address.

11.3 Stronger Security Guarantees for Backward Indirect Jumps 77

Theoretically, it is possible (though not recommended) to have many destination addresses,
which could fill up the instruction cache, fetch buffer, and other resources.

A simpler approach would be to use direct jump instructions jal instead of .word ad-
dresses following the dispatch. However, this would eliminate the ability to perform long jumps
(where destinations are far from the jump instruction) since jal has only a 21-bit offset.

The main hardware challenge is that the dispatch instruction effectively becomes variable-
sized: the interpretation of .word address1 depends on the preceding dispatch instruction.

11.2.5 Backward Indirect Jumps Are Necessary for Efficient Designs
According to [26], removing backward jumps results in significant performance and memory
overhead. Procedures typically have numerous call sites, leading to large return dispatches.
Therefore, the goal is to allow backward jumps while disallowing forward jumps to obtain a
good performance/security trade-off.

11.3 Stronger Security Guarantees for Backward Indirect Jumps
Since backward indirect jumps are essential for performance, their restricted semantics (return
to a previous location in the execution flow) must be strictly enforced, even against a strong
attacker. The goal is to guarantee the integrity of the return stack.

I propose a solution that leverages a dedicated hardware register, rsdepth , which tracks
the return stack depth as an unsigned value initialised to 0 at reset. When executing a forward
direct jump jal rd, offset , the return address is not written directly to rd . Instead, a
token is generated, containing the return address, the stack depth, and an integrity tag. Let
k1 and k2 be cryptographic keys initialised randomly at boot and Enck2 a symmetric encryption
algorithm using key k2. The token is computed as

token = MACk1(return address||rsdepth)||Enck2(return address), (11.1)

and the return stack counter rsdepth is incremented.
To fit within a machine word (32 or 64 bits), I assume that the most significant bits

of pointers can be repurposed to store the integrity tag. However, due to this constraint,
the tag size would be relatively small (≈ 8 bits), which presents a security challenge. To
prevent attackers from forging new return addresses by modifying tokens, the return address
is encrypted using a symmetric block cipher Enc with a device-specific key. Thus, even if
an attacker alters a token while maintaining a valid tag by chance, they cannot control the
destination of the indirect jump.

A token is the only valid argument for an indirect jump. Therefore, the jalr rd, rs1
indirect jumps are replaced with a more restricted jbck rs1 (“jump back”) instruction. The
rs1 argument must contain a token. Upon executing this instruction:

• the microarchitecture decrements the internal rsdepth register,
• the return address is obtained by decrypting the token payload,
• the tag is recomputed and verified by comparing it with the token’s higher bits.

If the tag is incorrect, the system triggers an alarm and responds accordingly.
This scheme is not yet finalised, and the cryptographic protocol must be further refined

based on what can be efficiently implemented in the microarchitecture.
Interrupts in microcontrollers can also be managed using this scheme, as an interrupt would

trigger the creation of the corresponding token.

11.4 Forward Indirect Jumps as a Security Boundary
In subsection 11.2.1, certain patterns (e.g., an OS launching a new process or an application
executing a plugin) have been shown to require forward indirect jumps. These use cases

11.5 Compiler Support 78

inherently represent a transition to a different security domain, as they involve jumping to
code unknown to the previous domain.

Therefore, forward indirect jumps must be restricted, and the security domain switch must
be enforced, for example, by ensuring the isolation of the microarchitectural state (cf. chap-
ter 6). As a result, such forward jumps are inherently costly, resembling privilege-level switch
mechanisms more than conventional indirect jumps.

11.5 Compiler Support
Modifying the ISA is one challenge, but this proposal also requires adapting compilers to
eliminate all forward indirect jumps, which remain essential for certain patterns (cf. listing 11.2).
Furthermore, since an ISA that supports forward indirect jumps is not equivalent to one that
does not, some programs (specifically, less secure ones) can no longer be compiled. Building
such a compiler or more realistically, modifying an existing one to achieve this goal, remains
an open problem.

A key advantage of our proposal is that the CFG can now be computed efficiently (both
quickly and precisely) by the compiler itself, enabling new static analysis passes that enforce
stronger guarantees about the code being written.

The schemes presented in this chapter will be the subject of a future PhD thesis, expected
to begin in Fall 2025.

11.6 Other Implications
The approach proposed in this chapter 11 is radical, as it involves modifying the ISA, which in
turn affects both the microarchitecture and the compiler. Existing programs, when recompiled
with a newly adapted compiler, may no longer function correctly, requiring modifications to
ensure compatibility.

Interestingly, an inherent property of our proposal is that the programs rendered invalid are
precisely the less secure ones. However, this does not mean that such programs do not exist or
are not widely deployed. For instance, consider computer music software, which heavily relies
on plugins to simulate various musical effects, instruments and more, where performance is
critical. As a result, prohibiting indirect jumps would pose significant challenges for computer
music applications in the current landscape.

12. Instruction Set Randomization for
Execution Integrity

If an attacker gains physical access to the targeted chip and injects faults such as glitches,
electromagnetic fault injection, or laser fault injection, they may compromise the integrity of
the executing program. Integrity, in this context, can refer to any of the five types of integrity
defined in section 3.4: data integrity, instruction integrity, control-flow integrity, architectural
state integrity, and microarchitectural state integrity.

To mitigate this threat, effective countermeasures must be proposed.

12.1 Lockstep Processors
12.1.1 General Working Principle

The solution commonly adopted by industrial designers is lockstep processors.
In a lockstep processor, as illustrated in Figure 12.1, the core is duplicated (or triplicated,

etc.), and both cores receive the same inputs. Their outputs are then compared. If a discrep-
ancy is detected, an alarm is triggered. In the case of triplication, a voting mechanism can be
used to determine the correct output.

An attacker able to inject the same fault into both cores could potentially bypass this
protection. To make such an attack more difficult, the two cores are typically desynchronized,
with one executing a few cycles ahead of the other.

Lockstep processors are primarily used in safety-critical applications [63], such as avionics,
to mitigate the effects of radiation-induced faults, which are more prevalent at high altitudes.
They are also common in security-oriented smartcards, which typically embed small microcon-
trollers with cryptographic accelerators. Defence-related devices may also use these processors
for the benefits of both safety and security.

12.1.2 Security
Lockstep processors ensure all five types of integrity defined in section 3.4, through duplication.

In particular, control-flow integrity (CFI) is guaranteed by the redundant execution of
control-flow instructions, such as branches and jumps. Data integrity is preserved by duplicat-
ing register files; however, it is not guaranteed if the memory itself is not duplicated.

12.1.3 Economics
An important consideration is the relative cost of core duplication compared to memory costs,
with both being proportional to the required silicon area.

79

12.2 Instruction Set Randomization 80

Figure 12.1: Generic DCLS processor scheme.

In the case of SEs, a key product requiring protection, according to [99], a Cortex-M0
microcontroller core occupies 0.01 mm2 in a 40 nm process. Meanwhile, according to [101], a
single static random-access memory (SRAM) cell in the same technology occupies 0.242 µm2.

This means that for the area of a single core, only 10
0.242 ≈ 41,322 SRAM cells can fit, equiv-

alent to approximately 5 kB. Although these numbers may vary depending on the technology,
the order of magnitude should remain.

These numbers indicate that any alternative solution ensuring data integrity must not
introduce a memory overhead exceeding 5 kB.

For more complex chips (such as those used in safety-critical applications), the economic
considerations may shift, as different types of memory are used in these cases.

12.1.4 Limitations
Lockstep processors are used for security primarily due to the lack of economic alternatives for
very small chips. These processors have proven effective over time, demonstrating their ability
to protect against various fault injection techniques.

However, injection techniques continue to evolve, and if an attacker were to successfully
target both cores simultaneously in a precise manner [84], the security provided by lockstep
processors could become obsolete overnight. Indeed, there is no inherent security guarantee
ensuring the integrity of the system. Unlike cryptographic integrity schemes, which offer formal
assurances, lockstep processors do not provide such guarantees.

Consequently, even though lockstep processors are effective today, they are not future-
proof.

12.2 Instruction Set Randomization

“Hardware-Assisted Program Execution Integrity: HAPEI” Ronan Lashermes,
Hélène Le Bouder, and Gaël Thomas. Secure IT Systems - 23rd Nordic Conference,
NordSec 2018 [39]

Having explored the limitations of lockstep processors, this section introduces ISR schemes

https://doi.org/10.1007/978-3-030-03638-6%5C_25

12.2 Instruction Set Randomization 81

as an alternative security mechanism. ISR schemes aim to enhance execution integrity by
encoding the CFG in the program binary, thereby preventing attackers from altering the control-
flow. This approach offers a robust defence against fault injection attacks and other threats
that compromise the integrity of program execution. The following discussion delves into the
principles of ISR, its implementation, and its implications for microarchitecture security.

12.2.1 Working Principle
This is a simplified description inspired by [39]. I omit implementation details to focus on the
core principles.

To ensure execution integrity (i.e., instruction integrity and control-flow integrity), instruction-
set randomization (ISR) techniques can be employed [19, 33]. The core idea is to modify the
program by encoding instructions, control-flow information, and integrity tags in a way that
allows on-the-fly verification during execution.

12.2.1.1 1-Predecessor Case
Encoding: Let k be a device-specific cryptographic key. An accumulator value, acc, is defined
which represents the computation history between instruction executions. Initially,

acc0 = MACk(IV), (12.1)

where IV is a random initialization vector.
For a program consisting of an ordered sequence of instructions [i1, i2, · · · , in, · · ·]:
Instructions with only one predecessor can be encoded as

i′n =C(accn)⊕ in, (12.2)

where C is a compression function (effectively a hash) ensuring that C(accn) has the same bit
width as an instruction. The accumulator is updated in the single-predecessor case as follows:

accn+1 = MACk(accn||in). (12.3)

The accumulator, representing the execution history at a given point in time, is updated
based on the previous history and the last executed instruction.
Decoding is performed similarly.

During execution, the accumulator is updated on-the-fly, enabling the correct decoding of
the next instruction:

accn = MACk(accn−1||in−1), (12.4)
in =C(accn)⊕ i′n. (12.5)

This construction ensures that the correct decoding of the next instruction is only possible
if both the encoded instruction and execution history are valid. The scheme provides strong
control-flow integrity guarantees, backed by cryptographic constructs.

12.2.1.2 2-Predecessor Case
A challenge arises when an instruction has two or more predecessors. The two-predecessor case
can be considered without loss of generality.

In this scenario, an instruction has two possible execution histories. Therefore, a scheme
that allows computing a unique new execution history from two possible values is needed.
The typical solution is to store metadata alongside multi-predecessor instructions to patch the
accumulator based on the previous value.

12.2 Instruction Set Randomization 82

Instruction Cache

acc
HMAC

C

i'n Decode stagein

Program
Counter

Figure 12.2: The fetch stage must be modified to decode (ISR decode, not microarchitectural
decode) instructions on-the-fly using the ISR scheme. Only the 1-predecessor circuitry is shown.

A more general polynomial-based solution was developed in [39], but it incurs signifi-
cant computational and memory overhead, making it impractical. However, most solutions
(e.g., [15]) directly embed patch values within the executable file.

12.2.2 Forward Indirect Jumps
As discussed in chapter 11, forward indirect jumps may redirect control flow in a way that is
not determinable at compile time. As a result, ISR schemes struggle to handle these jumps
effectively.

Some approaches exist: Confidaent [56] supports forward indirect jumps but only to a lim-
ited set of locations. The key idea is that the implementation allows access to the accumulator
value through dedicated instructions. Thus, it is possible to dynamically patch the accumulator
for indirect jumps, but at a high cost: either storing patches for all possible destinations or
computing them on-the-fly, requiring additional instructions for each indirect jump.

In my opinion, this issue has already been extensively discussed in chapter 11: forward
indirect jumps should be prohibited. Efficiently handling backward indirect jumps remains an
open problem, as far as I know.

12.2.3 (Micro)Architectural State Integrity
ISR schemes are not equivalent to lockstep processors, as they do not guarantee architectural
and microarchitectural state integrity. MAFIA [15] or Gousselot et al [27] propose a mechanism
to address this limitation.

Without delving too deeply into details, the core idea is to include microarchitectural signal
values as part of the execution history:

accn+1 = MACk(accn||in||µn), (12.6)

where µn is a bit vector containing the signals whose integrity must be protected at that clock
cycle.

This technique requires a microarchitectural model of the target chip during encoding,
necessitating a new application lifecycle (cf. section 12.3). It also imposes the constraint that
the microarchitecture must be deterministic, meaning two executions of the same program
must produce identical signal values. While this may be feasible for simple microcontrollers, it
is generally not true for complex out-of-order cores.

12.3 The Application Lifecycle 83

12.2.4 Data Integrity
Data integrity is often considered separately from other integrity concerns, as it requires dis-
tinct techniques. To ensure data integrity in RAM, cryptographic integrity schemes can be em-
ployed, such as storing integrity tags alongside the data. These schemes are typically combined
with confidentiality mechanisms. Recent cryptographic algorithms, such as ASCON [100], are
authenticated ciphers that ensure both integrity and confidentiality within a common process.

The main challenge with data integrity lies at the interface: when should data be encrypted
and decrypted? Should data in cache memories be encrypted for protection, or should it remain
in plaintext for performance reasons?

12.2.5 Results from Instruction Set Randomization Techniques
ISR schemes introduce computational, area, and memory overheads. Computational overhead
arises from the need to compute the execution history value, decode instructions, and perform
related operations. MAFIA [15], one of the most recent and well-designed solutions, reports
area overheads of 6% and 24%, depending on the hardware implementation, an 18% execution
time overhead, and a 29% memory overhead.

By applying these results to the computed economic values (cf. subsection 12.1.3), an
area overhead budget of

0.76×5kB≈ 3.8kB,

is obtained, converted into SRAM cells. This memory budget must accommodate the 29%
memory overhead. Thus, the application size must not exceed

3.8kB

0.29
≈ 13.1kB, (12.7)

to be economically viable with MAFIA. For larger applications, lockstep processors are more
cost-effective.

12.3 The Application Lifecycle
ISR schemes require an encoding phase that transforms the binary into its encoded equivalent.
Since this step relies on a device-specific key, it must be performed on the same chip that
executes the software.

I refer to this step as installation: from the program binary, which is the output of the
compilation process, the CFG is extracted, and the binary is encoded using the CFG information
and the device-specific key. Thus, installation is a program that runs on the chip and generates
a new executable program that can only run on that specific chip. This step must be performed
whenever the binary changes or the device key is updated. Installation may also enable device-
specific optimizations.

This lifecycle implies that, at some point, the unprotected program is present on the
device. To adhere to the threat model, installation must therefore be performed in a secure
environment.

A straightforward approach is to enforce installation as a final step in the device fabrication
process. Once the device key is generated, it is used to perform the installation, and a
fuse is blown to prevent further installations. Only then can the device be shipped to its
final destination. However, in this scenario, firmware updates are impossible, which may be
problematic depending on the use case.

An alternative approach is to allow in-situ installation, requiring a more complex process.
In this case, the installation process must verify the integrity and authenticity of the installed

12.4 The Limits of Control-Flow Integrity 84

application using a signature from the device manufacturer. This is similar to secure firmware
updates, a well-studied but complex topic [88]. Interestingly, since installation is performed
on the hardened core, it is reasonable to assume that an attacker cannot easily disrupt the
process through physical attacks. The installation program must be set up during the device
fabrication process, similar to pre-installed bootloaders commonly found in microcontrollers.

Finally, a challenge specific to our “no indirect jumps” proposal arises: if installation is
a program running on the chip, how can execution transition to the installed application,
given that our modified ISA explicitly prevents such jumps? This transition requires dedicated
support mechanisms:

• Hardware support: a mechanical switch is used to remap addresses to a different
physical memory location. The installation program resides at 0x1XXXXXX and writes
the encoded application to 0x2XXXXXXX. The mechanical switch determines the upper
four bits to be either 0x1 or 0x2, allowing the application to run after a simple reboot
and switch position change.

• Configuration support: similarly, a CSR can be used to store the upper four bits of the
memory mapping. This CSR could be backed by non-volatile memory to ensure that it
is applied at the next boot.

12.4 The Limits of Control-Flow Integrity
When discussing CFI, it is essential to reflect on the actual protection offered by CFI techniques.
In general, ensuring CFI is a way to prevent an attacker from accessing data they should
not have access to. A typical attack scenario involves diverting the control flow to read
and exfiltrate a secret using the application’s privileges: CFI is required to maintain data
confidentiality.

However, our expectations must be adjusted because of the control-flow integrity im-
possibility conjecture (definition 12.1).

Definition 12.1 - Control-Flow Integrity Impossibility Conjecture

In sufficiently large and complex programs, enforcing CFI guarantees that the program’s
execution is restricted to paths present in its CFG. However, because such CFGs inher-
ently contain Turing-complete substructures (i.e., virtual machines), an attacker who
can manipulate the data that determines which valid CFG edge is taken can simulate
arbitrary computations.
As a result, CFI alone cannot be transposed as a strong security property regarding
data. For example, CFI does not guarantee that sensitive data will remain inaccessible
in sufficiently large programs.

To illustrate this conjecture, consider the CFG of a program without forward indirect jumps,
as shown in Figure 12.4. This CFG is precise, and the edges between instructions represent
valid execution sequences.

When a node in the CFG, representing an instruction (or block of instructions), has mul-
tiple outgoing edges, it means that the instruction can be followed by any of the pointed
instructions, depending on data. The CFG highlights the dichotomy between the world of
instructions and the world of data. Instructions are represented as nodes in the CFG, but data
influence execution by determining which edges actually define the program’s progress. In this
representation, CFI ensures that the program execution adheres strictly to the CFG, but it
usually cannot guarantee that the correct edge is taken.

An attacker may attempt to execute their own code snippets, for example, by following
new edges in the CFG that are not normally present. When CFI is enforced, this is not possible.

12.5 Conclusion 85

x += y

if x > 10:
while x < 20:

x += 2
else:

x *= 2

if x == 25:
x = 5

return x

Figure 12.3: The pseudo-source
code for the CFG example in Fig-
ure 12.4.

Figure 12.4: A CFG example.

However, if a program (and thus its CFG) is large enough, VMs begin to emerge. In
this context, a VM is a subset of the CFG that is Turing complete. With such a VM, an
attacker only needs to corrupt or control data to gain arbitrary access to the system! VMs
can be extremely small (as exemplified in listing 12.1), meaning that CFI alone cannot prevent
arbitrary execution by an attacker.

This impossibility result is related to the concept of weird machines [10], which describes
how Turing-complete machines can emerge from sufficiently complex systems.

The CFI impossibility conjecture can be used as an argument in favour of lockstep pro-
cessors: there is little value in cryptographically guaranteeing CFI if it does not translate into
actual security for the data. A counterargument is that ensuring CFI may allow the compiler to
prove security properties. In particular, I suspect that proving the absence of a VM within the
CFG will eventually become the responsibility of the compiler. In this case, CFI enforcement,
combined with proof of VM absence, would serve as a significant deterrent against attackers.

12.5 Conclusion
In this chapter, the security of lockstep processors has been shown to be at risk from emerging
fault injection techniques, and ISR has been proposed as an alternative solution. ISR provides
a cryptographically-based integrity guarantee by encoding both instructions and control-flow
information.

12.5 Conclusion 86

Listing 12.1 Pseudo-assembly code for a small SUBLEQ VM, from [26].
// Data memory is filled with user-defined values
// Initialization
// Virtual program counter
// VPC(x13) = 0
load x13, #0

// Execute one subleq instruction
subleq:
// Read operands from data memory
move x1, x13
load x15, #1
add x13, x13, x15
move x2, x13
add x13, x13, x15
move x3, x13
// Increment for next instruction if no jump
add x13, x13, x15

// SUBLEQ execution
load x4, 0(x1)
load x5, 0(x2)
sub x6, x5, x4
store x6, 0(x2)
ble ijump, x6, x0

// Start next instruction
jump subleq

// Virtual indirect jump
ijump:
move x13, x3
// Start next instruction
jump subleq

12.5 Conclusion 87

Both lockstep processors and ISR-based processors have their merits and limitations. Cur-
rently, only lockstep processors are economically viable, but their security guarantees are too
limited to not actively search for a replacement technology. However, the implementation
of ISR introduces challenges related to performance and memory overhead, as well as the
need for a secure application lifecycle. While ISR schemes are more secure, their practical
implementation remains an active area of research.

13. Security Validation in Hardware

This chapter describes some implementation ideas that have not yet been rigorously
tested, nor fully implemented, and certainly not validated through a peer-reviewed pub-
lication. As a result, there are numerous blind spots in these descriptions. However, I
believe that considering actual implementations is a way to put theoretical schemes to
the test and allows us to think about the bigger picture: are these schemes realistic?

When an integrity mechanism detects an issue, that could signal an ongoing attack, how
should the system respond? One possible approach, focused on ensuring the confidentiality of
secret data in the system, is to shut down the system: erase memory to remove secrets, blow
a fuse to indicate a compromise, and prevent rebooting.

However, in most contexts, maintaining execution is preferable to ensure device availability.
Thus, the system must be capable of recovering from a compromised state.

!
In this chapter, there are two different types of decoders: the ISR decoder,
responsible for computing the instruction opcode from the encoded one as part
of the ISR scheme, and the standard pipeline stage decoder, which extracts
information from an instruction opcode.

In particular, consider the specific case of an ISR scheme: a fault injection corrupts an
instruction to be executed, and the ISR decoder detects the fault. Papers [15, 19, 27, 33,
39, 56] on ISR leave the response to such faults as an open question, or simply assume that
the infection property of the scheme will corrupt all subsequent instructions and lead to a
system crash. After all, at this point, the countermeasure has demonstrated its effectiveness.
In my view, recovering from a compromised state is closely tied to how the ISR decoder is
implemented. In this chapter, I explore possible microarchitectures for ISR.

13.1 Fetch and Decode
All ISR schemes require ISR decoding instructions on-the-fly, a process that depends on the
execution history. This step introduces a heavy computational load on the decoding path,
increasing fetch and decode latency. As far as I know, no literature evaluates different microar-
chitectural approaches for handling this challenge.

In this section, the microarchitecture of the fetch and decode stages of an ISR-supporting
microarchitecture is discussed.

88

13.1 Fetch and Decode 89

Instruction Cache

acc
HMAC

C

i'n

Decode stage

in

Program
Counter

Fetch Buffer

Figure 13.1: Adding a fetch buffer (in red) to the ISR scheme from Figure 12.2.

Instruction Cache

acc
Primitive

C

i'n

Decode stage

in

Program
Counter

Fetch Buffer

Figure 13.2: Highlighting in red the primitives to optimise.

13.1.1 Dedicated Buffer
A potential solution to amortise the cost of ISR decoding is to buffer decoded instructions
in a dedicated buffer (typically in a trace buffer or a fetch buffer, as shown in Figure 13.1).
Thus, if the next instruction to be executed is already in the buffer, there is no need to wait
for ISR decoding. However, the accumulator value must still be updated to verify that the
ISR-decoded instruction matches the executed one. The buffer does not exempt from verifying
that the instruction in the buffer has been correctly ISR-decoded; however, it does decouple
the data paths: verification can be done in parallel without a latency penalty.

13.1.2 Optimised Primitives
In HAPEI [39], we used an HMAC to update the accumulator, as it provides the desired security
properties. However, an HMAC is too large to be directly implemented as a hardware block in
the pipeline, as it would typically lie on the critical path, as shown in Figure 13.2.

In MAFIA [15], the authors use ASCON [100] for this purpose. Interestingly, although
ASCON is an authenticated cipher that provides integrity guarantees, it is not used in this way.
Instead, the implementation exploits the cipher’s infection property: if a fault occurs, the ISR-
decoded instruction is randomised, preventing the attacker from controlling its value. Designing
dedicated primitives and modes for this specific use case should allow better performance and
lower memory overhead.

13.1.3 Integrity Tags
Two techniques are commonly used to enforce and verify integrity:

1. Infection: the cryptographic properties of the cipher ensure that a corrupted instruction
appears pseudo-random once ISR decoded. This error propagates to the accumulator
and affects all subsequent instructions. There is a high probability that a core executing

13.2 Security Validation is Speculative 90

random instructions will eventually crash, typically by executing invalid instructions or
accessing memory out of bounds. Depending on the ISA, some opcodes are undefined,
which will also cause the processor to halt. However, most ISAs are quite dense, making
this less reliable.

2. Tag-checking instructions: a new instruction is introduced that embeds a large imme-
diate value. This value serves as a tag (or part of a tag) corresponding to the current
accumulator state. These instructions can be strategically placed within the program,
typically before sensitive operations, to verify execution integrity. Adding more tag-
checking instructions improves security but at the cost of increased memory usage and
execution overhead.

A third option may be feasible in the case of the RISC-V ISA:
3. 2-bit immediate in all opcodes: In RISC-V, the two least significant bits of an instruc-

tion opcode specify the instruction’s size. The value “11” indicates a 32-bit instruction,
while other values are reserved for the compressed extension (C extension), which
supports 16-bit instructions. In systems without the C extension, these two bits could
be repurposed as tags. For example, a 2-bit tag could represent the accumulator value
modulo 4 (acc mod 4). This tag could be checked at every clock cycle. Of course,
there is a 25% probability that a faulty instruction will coincidentally have a valid tag.
However, due to the infection property, subsequent tags would also be affected by the
fault. Thus, to achieve a given security level s at instruction i, it is sufficient to verify
the tags of the s

2 instructions following i. The C extension improves code density by
25% [70], thus the memory cost of this approach.

13.2 Security Validation is Speculative
Validating integrity tags introduces a new challenge: it takes time. Waiting for tag validation
before executing each instruction is not feasible from a performance perspective.

However, continuing execution without waiting for validation is precisely the purpose of
speculative microarchitectures, as discussed in subsection 2.2.2. I argue that a properly de-
signed ISR-supporting microarchitecture should take inspiration from speculative microarchi-
tectures.

In this approach, the commit operation can only proceed once a sufficient number of tag bits
have been consumed to validate one or more instructions. This method allows for a combination
of 2-bit immediate tags and dedicated tag-checking instructions, achieving an optimal balance
between security, memory overhead, and execution time overhead, as illustrated in Figure 13.3.

Instruction Cache

acc
HMAC

C

i'n

Decode stage
in

Program
Counter

Fetch Buffer Reorder Buffer

Accumulated tag
bitcount

2-bit
immediate

tag (from tag
checking

instruction)

Tag checker

Fault
detected ?

Figure 13.3: A tag checker component, in conjunction with a tag bit counter in the ROB,
accumulates tag bits up to a predefined security level.

As with misspeculation, if an error is detected in the tags, the microarchitectural state can
be reverted to the last valid point. Thus, this microarchitecture can ensure availability even in
the presence of fault injection.

13.2 Security Validation is Speculative 91

Out-of-order execution can also help ensure data integrity. To detect faults, each instruc-
tion can be executed multiple times, preferably not within the same clock cycle. A configurable
register could determine how many times an instruction must be executed before it is commit-
ted. The first execution writes the result into the corresponding ROB entry, as illustrated in
Figure 13.4. Subsequent executions compare their results against the stored ROB entry. If a
mismatch occurs, the pipeline is reverted to the last valid committed instruction.

Instruction Cache

acc
HMAC

C

i'n

Decode stage
in

Program
Counter

Fetch Buffer

Reorder Buffer

Accumulated tag
bitcount Redundancy Result

2-bit
immediate

tag (from tag
checking

instruction)

Tag checker

Fault
detected ?

Execution Unit 1

Execution Unit 2

Execution Unit 3

Other
stages not
displayed

Execute stage

Figure 13.4: Each instruction can be executed multiple times to ensure that the computation
remains fault-free.

Interestingly, increasing the number of execution units to accommodate redundant compu-
tation should minimise execution time overhead.

The proposed solution demonstrates that out-of-order microarchitectures are strong candi-
dates for ensuring core availability, even in the presence of fault injection. However, numerous
details must be refined to validate this scheme: how should faults in memories, such as the
register file or the ROB, be handled? Additionally, out-of-order microarchitectures are vulnera-
ble to transient attacks. To address this, the microarchitecture must prevent speculative loads
from accessing data. In other words, it must wait to commit all instructions preceding each
load instruction, ensuring that only non-speculative loads are executed.

14. Concluding on Radical Designs

In this part, techniques to ensure data integrity and confidentiality, particularly against physical
attacks, have been proposed.

In particular, lockstep processors are the standard solution for enhancing computational
integrity, but their long-term viability is uncertain. Indeed, with advances in fault injection
techniques, lockstep processors may become vulnerable in the future. Therefore, it is crucial
to anticipate a future without lockstep processors now.

My Recommendations for Radical Designs

Future-proof designs must ensure integrity through cryptographic primitives embedded
within the microarchitecture. To lay the groundwork for more secure chips, here are my
recommendations.

• The ISA must be modified in two ways:
1. To enhance data confidentiality while maintaining acceptable performance,

the microarchitecture must be aware of secret data, which can be achieved
through confidential registers (chapter 10).

2. To strengthen computational integrity, forward indirect jumps should be
eliminated. This not only prevents certain control flow hijacking attacks but
also lays the foundation for ISR schemes (chapter 11).

• To replace lockstep processors, instruction-set randomization (ISR) schemes
should be employed. These schemes provide cryptographic guarantees for ex-
ecution integrity. However, their efficiency is currently insufficient, preventing
their adoption in commercial chips today (chapter 12). Research efforts should
be pursued to improve the performance of these schemes.

• Microarchitectural integrity should be improved by designing a core microarchi-
tecture capable of handling speculation for integrity validation. Redundancy can
then be verified speculatively to maintain performance (chapter 13).

92

IVConclusion

15 Conclusion . 94
15.1 Reflecting on Past Works 94
15.2 Future-Proof Designs . 94
15.3 Perspectives: How to Get There? 95

93

15. Conclusion

15.1 Reflecting on Past Works
This manuscript was heavily influenced by the joint work done with the PhD students that I
advise or supervise:

• Sébanjila Kevin Bukasa defended his thesis “Analyse de vulnérabilité des systèmes
embarqués face aux attaques physiques” in 2019.

• Mathieu Escouteloup defended “Garantir l’isolation microarchitecturale des processeurs”
in 2021.

• Amélie Marotta will defend her thesis “Characterising and Modelling Synchronous
Clock-Glitch Fault Injection” in 2025.

• Herinomena Andrianatrehina will defend his thesis “Ensuring Confidentiality in Mod-
ern Out-of-Order Cores” in 2025.

These past works were critical in developing my personal view of hardware security, centred
around the necessity of a holistic design process. This view is what I try to share in this
manuscript.

15.2 Future-Proof Designs
In this document, several security issues concerning modern microarchitectures have been
examined. These problems are inherent to the nature of microarchitectural design, and there
is no quick fix for them.

For application processors, there are currently no efficient solutions to covert channels and
transient attacks. A trade-off must be made between security and performance, as achieving
perfect security would require formal methods that have not yet been scaled effectively. In my
opinion, vendors have too heavily favoured performance in response to demand, leaving nu-
merous exploitable security vulnerabilities, as evidenced by the constant stream of publications
detailing new attacks on these processors.

Additionally, the microarchitecture of fault-hardened microcontrollers has been described.
Lockstep processors, the standard solution today, are effective in practice but do not provide
an integrity guarantee in the cryptographic sense. Consequently, as fault injection techniques
continue to advance, lockstep processors may eventually become vulnerable.

Current designs are not future-proof: they are adopted because they offer a favourable
performance-to-cost trade-off while operating at the edge of acceptable security. New attacks
continue to expose weaknesses to transient attacks, and lockstep processors may eventually
succumb to emerging fault injection techniques, such as dual-beam laser fault injection.

94

https://theses.fr/2019REN1S042
https://theses.fr/2019REN1S042
https://theses.fr/2021REN1S109

15.3 Perspectives: How to Get There? 95

The current vulnerabilities are not inevitable; more secure designs are possible.
If you are a hardware designer today, my recommendations depend on the device class.

For application processors (chapter 9):
• In the short term, microarchitectural designers should minimise covert channels by par-

titioning microarchitectural state whenever possible, selecting structures that are easily
flushable, and leveraging dedicated extensions such as fence.time . Speculation barri-
ers currently do not offer a favourable performance/security trade-off and should likely
be deferred until more robust implementations and effective fence placement strategies
are developed.

• In the long term, the architecture should define confidential registers. These registers
would enable efficient security enhancements such as selective speculation and provide
guarantees against both architectural and microarchitectural timing channels.

For microcontrollers (chapter 14):
• In the short term, use lockstep processors.
• In the long term, define and adopt a restricted ISA that, for example, forbids forward

indirect jumps in the general case.
• Instruction-set randomization (ISR) schemes should be employed to provide integrity

guarantees in place of lockstep processors. However, current ISR-based cores do not yet
offer acceptable efficiency.

For both types of cores, architectural confidential registers can enhance security by making
the microarchitecture aware of the data’s security constraints.

15.3 Perspectives: How to Get There?
Among the proposed solutions, some are readily applicable (e.g., fence.time), while others are
not. In particular, some research questions still need to be addressed.

1. Efficient instruction-set randomization (ISR) schemes: Current ISR schemes are
not performant enough to replace lockstep processors. New schemes must be developed
with better performance and lower memory overhead. A promising approach would be to
design schemes based on cryptographic primitives for integrity rather than repurposing
confidentiality primitives.

2. Security-aware compilers: Mainstream compilers such as LLVM and GCC do not even
guarantee correctness, let alone security! To enhance security, compilers must be security-
aware: they should track security properties (e.g., confidential variables) from the input
language through to instruction generation. This capability could enable security guar-
antees or, at the very least, ensure non-interference from optimization passes.

3. Security-aware microarchitectures: The hardware counterpart of better compilers is
microarchitectures that can leverage the knowledge of security properties associated with
data and instructions to achieve better performance/security trade-offs. In my opinion,
the long-term solution to transient attacks necessitates security-aware microarchitec-
tures.

4. Modern hardware description languages (HDLs): Designing a complex out-of-order
microarchitecture is challenging, made even harder by the lack of modern (public) tools.
Much of hardware development still relies on VHDL or Verilog HDLs, which are outdated
for this purpose, akin to developing a complex operating system in assembly language!
More recently, a new generation of hardware description languages, such as Chisel
(2012) and SpinalHDL (2015), has gained traction by leveraging modern programming
paradigms and type systems (they are domain-specific languages embedded in Scala 2).
These languages have demonstrated their effectiveness, as evidenced by the development
of fully synthesizable out-of-order cores like BOOM (in Chisel) and Nax (in SpinalHDL),
achieved by very small teams or even single individuals. Notably, leveraging strong type

15.3 Perspectives: How to Get There? 96

systems enables early error detection, reducing the need for extensive testing.
However, Scala itself (first released in 2004) is now over twenty years old! By now, we
should have better languages built on more modern foundations, featuring advanced type
systems with sum types, built-in support for invariant guarantees, and more. Integrating
such features into Scala would be challenging. The next generation of HDLs should be
embedded in a more powerful language. In my opinion, the Lean language is a strong
candidate due to its focus on formal methods.

These research topics are pursued in the research projects I am involved in: the PEPR
Cyber ARSENE project, the PTCC Forward project, the Grand Défi Cyber Cyberpros project.
I am part of a team of researchers trying to improve ISR schemes through a new ANR project
called FAIR, currently in the proposal evaluation stage.

A cornerstone of a holistic approach to security is, in my opinion, the ISA. Hence my active
involvement in the RISC-V Foundation work, as a member of the Security HC and chair of the
Timing Fences Task Group. The technical debates in these groups are very interesting as they
represent a variety of opinions from members representing both industry and academic points
of view.

Ultimately, addressing microarchitectural security challenges requires a collective effort
across academia, industry, and the open-source community. The directions outlined in this
manuscript offer concrete pathways toward more secure, future-proof hardware designs, but
realising these advancements depends critically on fostering open collaboration, prioritising se-
curity alongside performance, and adopting rigorous, security-aware development methodolo-
gies. While achieving secure and efficient architectures is ambitious, more research is essential
to move the ecosystem in the right direction.

IVAnnexes

Bibliography. 98
Articles . 98
Livres . 107
Autre . 107

Acronyms . 110

Glossary . 113

97

Bibliography

Articles
[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. “Predicting Secret Keys Via

Branch Prediction”. In: Topics in Cryptology - CT-RSA 2007, The Cryptogra-
phers’ Track at the RSA Conference 2007, San Francisco, CA, USA, February
5-9, 2007, Proceedings. Edited by Masayuki Abe. Volume 4377. Lecture Notes in
Computer Science. Springer, 2007, pages 225–242. doi: 10.1007/11967668_15.
url: https://doi.org/10.1007/11967668%5C_15 (cited on page 36).

[2] Sam Ainsworth and Timothy M. Jones. “MuonTrap: Preventing Cross-Domain Spectre-
Like Attacks by Capturing Speculative State”. In: 47th ACM/IEEE Annual Interna-
tional Symposium on Computer Architecture, ISCA 2020, Virtual Event / Va-
lencia, Spain, May 30 - June 3, 2020. IEEE, 2020, pages 132–144. doi: 10.1109
/ISCA45697.2020.00022. url: https://doi.org/10.1109/ISCA45697.2020.00
022 (cited on page 51).

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida García,
and Nicola Tuveri. “Port Contention for Fun and Profit”. In: 2019 IEEE Symposium
on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019.
IEEE, 2019, pages 870–887. doi: 10.1109/SP.2019.00066. url: https://doi.or
g/10.1109/SP.2019.00066 (cited on page 36).

[4] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael
Emmi. “Verifying Constant-Time Implementations”. In: 25th USENIX Security Sym-
posium (USENIX Security 16). Austin, TX: USENIX Association, Aug. 2016, pages 53–
70. isbn: 978-1-931971-32-4. url: https://www.usenix.org/conference/usenix
security16/technical-sessions/presentation/almeida (cited on page 32).

[5] Herinomena Andrianatrehina, Ronan Lashermes, Joseph Paturel, Simon Rokicki, and
Thomas Rubiano. “fence.spec: exploring speculation barriers for RISC-V selective
speculation”. In: under submission (2025). url: https://ronan.lashermes.0nli
ne.fr/papers/fence-spec.pdf (cited on page 55).

[6] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. “Spec-
Shield: Shielding Speculative Data from Microarchitectural Covert Channels”. In: 28th
International Conference on Parallel Architectures and Compilation Techniques,
PACT 2019, Seattle, WA, USA, September 23-26, 2019. IEEE, 2019, pages 151–
164. doi: 10.1109/PACT.2019.00020. url: https://doi.org/10.1109/PACT.20
19.00020 (cited on pages 51, 52).

[7] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. “Secure Compilation of Side-
Channel Countermeasures: The Case of Cryptographic “Constant-Time””. In: 2018
IEEE 31st Computer Security Foundations Symposium (CSF). 2018, pages 328–
343. doi: 10.1109/CSF.2018.00031 (cited on page 32).

[8] Daniel J Bernstein. “Cache-timing attacks on AES”. In: (2005) (cited on page 36).

98

https://doi.org/10.1007/11967668_15
https://doi.org/10.1007/11967668%5C_15
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://ronan.lashermes.0nline.fr/papers/fence-spec.pdf
https://ronan.lashermes.0nline.fr/papers/fence-spec.pdf
https://doi.org/10.1109/PACT.2019.00020
https://doi.org/10.1109/PACT.2019.00020
https://doi.org/10.1109/PACT.2019.00020
https://doi.org/10.1109/CSF.2018.00031

Bibliography 99

[9] Thomas Bourgeat, Ilia A. Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and Srinivas
Devadas. “MI6: Secure Enclaves in a Speculative Out-of-Order Processor”. In: Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2019, Columbus, OH, USA, October 12-16, 2019. ACM, 2019,
pages 42–56. doi: 10.1145/3352460.3358310. url: https://doi.org/10.1145
/3352460.3358310 (cited on pages 51, 53).

[10] Sergey Bratus, Michael E. Locasto, Meredith L. Patterson, Len Sassaman, and Anna
Shubina. “Exploit Programming: From Buffer Overflows to ”Weird Machines” and
Theory of Computation”. In: login Usenix Mag. 36.6 (2011). url: https://www
.usenix.org/publications/login/december-2011-volume-36-number-6/exp
loit-programming-buffer-overflows-weird (cited on page 85).

[11] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens. “LVI: Hijacking
Transient Execution through Microarchitectural Load Value Injection”. In: 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 2020, pages 54–72. doi: 10.1109/SP40000.2020.00089. url:
https://doi.org/10.1109/SP40000.2020.00089 (cited on page 48).

[12] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx.
“Telling Your Secrets without Page Faults: Stealthy Page Table-Based Attacks on En-
claved Execution”. In: 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017. Edited by Engin Kirda and Thomas
Ristenpart. USENIX Association, 2017, pages 1041–1056. url: https://www.useni
x.org/conference/usenixsecurity17/technical-sessions/presentation/va
n-bulck (cited on page 36).

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. “A Systematic
Evaluation of Transient Execution Attacks and Defenses”. In: 28th USENIX Security
Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019.
Edited by Nadia Heninger and Patrick Traynor. USENIX Association, 2019, pages 249–
266. url: https://www.usenix.org/conference/usenixsecurity19/presentat
ion/canella (cited on page 45).

[14] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina Minkin,
Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval
Yarom. “Fallout: Leaking Data on Meltdown-resistant CPUs”. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019. Edited by Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. ACM, 2019, pages 769–784.
doi: 10.1145/3319535.3363219. url: https://doi.org/10.1145/3319535.336
3219 (cited on page 45).

[15] Thomas Chamelot, Damien Couroussé, and Karine Heydemann. “MAFIA: Protecting
the Microarchitecture of Embedded Systems Against Fault Injection Attacks”. In: IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 42.12 (2023), pages 4555–4568.
doi: 10.1109/TCAD.2023.3276507. url: https://doi.org/10.1109/TCAD.2023
.3276507 (cited on pages 82, 83, 88, 89).

[16] Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison. “Specula-
tive Privacy Tracking (SPT): Leaking Information From Speculative Execution Without
Compromising Privacy”. In: MICRO ’21: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, Virtual Event, Greece, October 18-22, 2021.

https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1145/3352460.3358310
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/exploit-programming-buffer-overflows-weird
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/exploit-programming-buffer-overflows-weird
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/exploit-programming-buffer-overflows-weird
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1109/SP40000.2020.00089
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1109/TCAD.2023.3276507
https://doi.org/10.1109/TCAD.2023.3276507
https://doi.org/10.1109/TCAD.2023.3276507

Bibliography 100

ACM, 2021, pages 607–622. doi: 10.1145/3466752.3480068. url: https://doi
.org/10.1145/3466752.3480068 (cited on pages 51, 52).

[17] A D’Amato, S Dancel, J Pilutti, L Tellis, E Frascaroli, and JC Gerdes. “Exceptional
driving principles for autonomous vehicles”. In: JL & Mobility (2022), page 1 (cited
on page 24).

[18] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara Rezk, and
Frank Piessens. “ProSpeCT: Provably Secure Speculation for the Constant-Time Pol-
icy”. In: 32nd USENIX Security Symposium, USENIX Security 2023, Anaheim,
CA, USA, August 9-11, 2023. Edited by Joseph A. Calandrino and Carmela Tron-
coso. USENIX Association, 2023, pages 7161–7178. url: https://www.usenix.org
/conference/usenixsecurity23/presentation/daniel (cited on page 53).

[19] Ruan de Clercq, Johannes Götzfried, David Übler, Pieter Maene, and Ingrid Verbauwhede.
“SOFIA: Software and control flow integrity architecture”. In: Computers & Security
68 (2017), pages 16–35. issn: 0167-4048. doi: https://doi.org/10.1016/j.cos
e.2017.03.013. url: https://www.sciencedirect.com/science/article/pii
/S0167404817300664 (cited on pages 81, 88).

[20] Mathieu Escouteloup, Ronan Lashermes, Jacques Fournier, and Jean-Louis Lanet. “Un-
der the Dome: Preventing Hardware Timing Information Leakage”. In: Smart Card
Research and Advanced Applications - 20th International Conference, CARDIS
2021. Edited by Vincent Grosso and Thomas Pöppelmann. Volume 13173. Lecture
Notes in Computer Science. Springer, 2021, pages 233–253. doi: 10.1007/978-3-03
0-97348-3_13. url: https://ronan.lashermes.0nline.fr/papers/CARDIS202
1.pdf (cited on pages 11, 35, 37, 39, 41).

[21] Mathieu Escouteloup, Ronan Lashermes, Jean-Louis Lanet, and Jacques Fournier. “Rec-
ommendations for a radically secure ISA”. In: CARRV 2020-Workshop on Computer
Architecture Research with RISC-V. ACM. 2020, pages 1–22. url: https://ron
an.lashermes.0nline.fr/papers/CARRV2020.pdf (cited on page 73).

[22] Clément Fanjas, Driss Aboulkassimi, Simon Pontié, and Jessy Clédière. “Exploration of
System-on-Chip Secure-Boot Vulnerability to Fault-Injection by Side-Channel Analysis”.
In: IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, DFT 2023, Juan-Les-Pins, France, October 3-5, 2023.
Edited by Luca Cassano, Mihalis Psarakis, Marcello Traiola, and Alberto Bosio. IEEE,
2023, pages 1–6. doi: 10.1109/DFT59622.2023.10313346. url: https://doi.or
g/10.1109/DFT59622.2023.10313346 (cited on pages 24, 25).

[23] Franz A. Fuchs, Jonathan Woodruff, Peter Rugg, Marno van der Maas, Alexandre Joan-
nou, Alexander Richardson, Jessica Clarke, Nathaniel Wesley Filardo, Brooks Davis,
John Baldwin, Peter G. Neumann, Simon W. Moore, and Robert N. M. Watson. “Ar-
chitectural Contracts for Safe Speculation”. In: 41st IEEE International Conference
on Computer Design, ICCD 2023, Washington, DC, USA, November 6-8, 2023.
IEEE, 2023, pages 578–586. doi: 10.1109/ICCD58817.2023.00093. url: https:
//doi.org/10.1109/ICCD58817.2023.00093 (cited on page 53).

[24] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-
centric Defense Mechanism against Spectre Attacks”. In: Proceedings of the 56th
Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA,
June 02-06, 2019. ACM, 2019, page 61. doi: 10.1145/3316781.3317914. url:
https://doi.org/10.1145/3316781.3317914 (cited on pages 51, 52).

https://doi.org/10.1145/3466752.3480068
https://doi.org/10.1145/3466752.3480068
https://doi.org/10.1145/3466752.3480068
https://www.usenix.org/conference/usenixsecurity23/presentation/daniel
https://www.usenix.org/conference/usenixsecurity23/presentation/daniel
https://doi.org/https://doi.org/10.1016/j.cose.2017.03.013
https://doi.org/https://doi.org/10.1016/j.cose.2017.03.013
https://www.sciencedirect.com/science/article/pii/S0167404817300664
https://www.sciencedirect.com/science/article/pii/S0167404817300664
https://doi.org/10.1007/978-3-030-97348-3_13
https://doi.org/10.1007/978-3-030-97348-3_13
https://ronan.lashermes.0nline.fr/papers/CARDIS2021.pdf
https://ronan.lashermes.0nline.fr/papers/CARDIS2021.pdf
https://ronan.lashermes.0nline.fr/papers/CARRV2020.pdf
https://ronan.lashermes.0nline.fr/papers/CARRV2020.pdf
https://doi.org/10.1109/DFT59622.2023.10313346
https://doi.org/10.1109/DFT59622.2023.10313346
https://doi.org/10.1109/DFT59622.2023.10313346
https://doi.org/10.1109/ICCD58817.2023.00093
https://doi.org/10.1109/ICCD58817.2023.00093
https://doi.org/10.1109/ICCD58817.2023.00093
https://doi.org/10.1145/3316781.3317914
https://doi.org/10.1145/3316781.3317914

Bibliography 101

[25] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano Giuffrida.
“Speculative Probing: Hacking Blind in the Spectre Era”. In: CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020. Edited by Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna. ACM, 2020, pages 1871–1885. doi: 10.1145/3372297.3417289.
url: https://doi.org/10.1145/3372297.3417289 (cited on page 48).

[26] Alexandre Gonzalvez and Ronan Lashermes. “A case against indirect jumps for secure
programs”. In: Proceedings of the 9th Workshop on Software Security, Protection,
and Reverse Engineering 2019. 2019, pages 1–10. url: https://ronan.lasherm
es.0nline.fr/papers/SSPREW2019.pdf (cited on pages 73, 77, 86).

[27] Théophile Gousselot, Jean-Max Dutertre, Olivier Potin, and Jean-Baptiste Rigaud.
“Code Encryption for Confidentiality and Execution Integrity down to Control Signals”.
In: IEEE International Symposium on Hardware Oriented Security and Trust
(HOST). 2025 (cited on pages 82, 88).

[28] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “TLBleed: When Pro-
tecting Your CPU Caches is not Enough”. In: Black Hat USA. Aug. 2018. url: Sli
des=https://i.blackhat.com/us-18/Thu-August-9/us-18-Gras-TLBleed-Wh
en-Protecting-Your-CPU-Caches-is-Not-Enough.pdf%20Web=https://vusec
.net/projects/tlbleed (cited on page 36).

[29] Conor Green, Cole Nelson, Mithuna Thottethodi, and T. N. Vijaykumar. “SafeBet:
Secure, Simple, and Fast Speculative Execution”. In: CoRR abs/2306.07785 (2023).
doi: 10.48550/ARXIV.2306.07785. arXiv: 2306.07785. url: https://doi.org/1
0.48550/arXiv.2306.07785 (cited on pages 51, 53).

[30] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. “Hardware-Software Con-
tracts for Secure Speculation”. In: 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 2021, pages 1868–
1883. doi: 10.1109/SP40001.2021.00036. url: https://doi.org/10.1109/SP4
0001.2021.00036 (cited on page 53).

[31] Guangyuan Hu, Zecheng He, and Ruby B. Lee. “SoK: Hardware Defenses Against Specu-
lative Execution Attacks”. In: 2021 International Symposium on Secure and Private
Execution Environment Design (SEED), Washington, DC, USA, September 20-
21, 2021. IEEE, 2021, pages 108–120. doi: 10.1109/SEED51797.2021.00023. url:
https://doi.org/10.1109/SEED51797.2021.00023 (cited on page 51).

[32] Hai Jin, Zhuo He, and Weizhong Qiang. “SpecTerminator: Blocking Speculative Side
Channels Based on Instruction Classes on RISC-V”. In: ACM Trans. Archit. Code
Optim. 20.1 (2023), 15:1–15:26. doi: 10.1145/3566053. url: https://doi.org/1
0.1145/3566053 (cited on pages 51, 52).

[33] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. “Countering code-injection
attacks with instruction-set randomization”. In: Proceedings of the 10th ACM Con-
ference on Computer and Communications Security. CCS ’03. Washington D.C.,
USA: Association for Computing Machinery, 2003, pages 272–280. isbn: 1581137389.
doi: 10.1145/948109.948146. url: https://doi.org/10.1145/948109.948146
(cited on pages 81, 88).

[34] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry Ev-
tyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. “SafeSpec: Banishing the
Spectre of a Meltdown with Leakage-Free Speculation”. In: Proceedings of the 56th
Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA,

https://doi.org/10.1145/3372297.3417289
https://doi.org/10.1145/3372297.3417289
https://ronan.lashermes.0nline.fr/papers/SSPREW2019.pdf
https://ronan.lashermes.0nline.fr/papers/SSPREW2019.pdf
Slides=https://i.blackhat.com/us-18/Thu-August-9/us-18-Gras-TLBleed-When-Protecting-Your-CPU-Caches-is-Not-Enough.pdf%20Web=https://vusec.net/projects/tlbleed
Slides=https://i.blackhat.com/us-18/Thu-August-9/us-18-Gras-TLBleed-When-Protecting-Your-CPU-Caches-is-Not-Enough.pdf%20Web=https://vusec.net/projects/tlbleed
Slides=https://i.blackhat.com/us-18/Thu-August-9/us-18-Gras-TLBleed-When-Protecting-Your-CPU-Caches-is-Not-Enough.pdf%20Web=https://vusec.net/projects/tlbleed
Slides=https://i.blackhat.com/us-18/Thu-August-9/us-18-Gras-TLBleed-When-Protecting-Your-CPU-Caches-is-Not-Enough.pdf%20Web=https://vusec.net/projects/tlbleed
https://doi.org/10.48550/ARXIV.2306.07785
https://arxiv.org/abs/2306.07785
https://doi.org/10.48550/arXiv.2306.07785
https://doi.org/10.48550/arXiv.2306.07785
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SEED51797.2021.00023
https://doi.org/10.1109/SEED51797.2021.00023
https://doi.org/10.1145/3566053
https://doi.org/10.1145/3566053
https://doi.org/10.1145/3566053
https://doi.org/10.1145/948109.948146
https://doi.org/10.1145/948109.948146

Bibliography 102

June 02-06, 2019. ACM, 2019, page 60. doi: 10.1145/3316781.3317903. url:
https://doi.org/10.1145/3316781.3317903 (cited on page 51).

[35] Jason Kim, Jalen Chuang, Daniel Genkin, and Yuval Yarom. “FLOP: Breaking the
Apple M3 CPU via False Load Output Predictions”. In: USENIX Security. 2025 (cited
on page 48).

[36] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas Devadas, and Joel
S. Emer. “DAWG: A Defense Against Cache Timing Attacks in Speculative Execution
Processors”. In: 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer
Society, 2018, pages 974–987. doi: 10.1109/MICRO.2018.00083. url: https://do
i.org/10.1109/MICRO.2018.00083 (cited on page 51).

[37] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: 40th IEEE
Symposium on Security and Privacy (S&P’19). 2019 (cited on pages 44, 46, 47).

[38] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”. In: Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings. Edited by Neal Koblitz. Volume 1109. Lecture Notes in
Computer Science. Springer, 1996, pages 104–113. doi: 10.1007/3-540-68697-5_9.
url: https://doi.org/10.1007/3-540-68697-5%5C_9 (cited on page 30).

[39] Ronan Lashermes, Hélène Le Bouder, and Gaël Thomas. “Hardware-Assisted Program
Execution Integrity: HAPEI”. In: Secure IT Systems - 23rd Nordic Conference,
NordSec 2018. Edited by Nils Gruschka. Volume 11252. Lecture Notes in Computer
Science. Springer, 2018, pages 405–420. doi: 10.1007/978-3-030-03638-6_25.
url: https://doi.org/10.1007/978-3-030-03638-6%5C_25 (cited on pages 80–
82, 88, 89).

[40] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. “Conditional Speculation:
An Effective Approach to Safeguard Out-of-Order Execution Against Spectre Attacks”.
In: 25th IEEE International Symposium on High Performance Computer Archi-
tecture, HPCA 2019, Washington, DC, USA, February 16-20, 2019. IEEE, 2019,
pages 264–276. doi: 10.1109/HPCA.2019.00043. url: https://doi.org/10.110
9/HPCA.2019.00043 (cited on pages 51, 52).

[41] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. “Meltdown: Reading Kernel Memory from User Space”. In: 27th USENIX
Security Symposium (USENIX Security 18). 2018 (cited on page 45).

[42] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish Narayanasamy,
and Baris Kasikci. “DOLMA: Securing Speculation with the Principle of Transient Non-
Observability”. In: 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021. Edited by Michael D. Bailey and Rachel Greenstadt. USENIX
Association, 2021, pages 1397–1414. url: https://www.usenix.org/conference
/usenixsecurity21/presentation/loughlin (cited on pages 51, 52).

[43] Giorgi Maisuradze and Christian Rossow. “ret2spec: Speculative Execution Using Re-
turn Stack Buffers”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, Oc-
tober 15-19, 2018. Edited by David Lie, Mohammad Mannan, Michael Backes, and

https://doi.org/10.1145/3316781.3317903
https://doi.org/10.1145/3316781.3317903
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5%5C_9
https://doi.org/10.1007/978-3-030-03638-6_25
https://doi.org/10.1007/978-3-030-03638-6%5C_25
https://doi.org/10.1109/HPCA.2019.00043
https://doi.org/10.1109/HPCA.2019.00043
https://doi.org/10.1109/HPCA.2019.00043
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin

Bibliography 103

XiaoFeng Wang. ACM, 2018, pages 2109–2122. doi: 10.1145/3243734.3243761.
url: https://doi.org/10.1145/3243734.3243761 (cited on page 47).

[44] Daniel S. McFarlin, Charles Tucker, and Craig B. Zilles. “Discerning the dominant out-
of-order performance advantage: is it speculation or dynamism?” In: Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2013,
Houston, TX, USA, March 16-20, 2013. Edited by Vivek Sarkar and Rastislav Bodík.
ACM, 2013, pages 241–252. doi: 10.1145/2451116.2451143. url: https://doi
.org/10.1145/2451116.2451143 (cited on page 61).

[45] Matt Miller. “Trends, Challenges, and Shifts in Software Vulnerability Mitigation”. In:
Proceedings of BlueHat IL 2019. 2019. url: https://github.com/Microsof
t/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHat
IL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20sh
ifts%20in%20software%20vulnerability%20mitigation.pdf (cited on page 28).

[46] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and Mark Silberstein. “Hide and Seek
with Spectres: Efficient discovery of speculative information leaks with random testing”.
In: 44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA,
USA, May 21-25, 2023. IEEE, 2023, pages 1737–1752. doi: 10.1109/SP46215.20
23.10179391. url: https://doi.org/10.1109/SP46215.2023.10179391 (cited
on page 48).

[47] Hamza Omar and Omer Khan. “IRONHIDE: A Secure Multicore that Efficiently Miti-
gates Microarchitecture State Attacks for Interactive Applications”. In: IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA 2020,
San Diego, CA, USA, February 22-26, 2020. IEEE, 2020, pages 111–122. doi:
10.1109/HPCA47549.2020.00019. url: https://doi.org/10.1109/HPCA47549
.2020.00019 (cited on pages 51, 53).

[48] Marco Patrignani and Marco Guarnieri. “Exorcising Spectres with Secure Compilers”.
In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19, 2021. Edited by
Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi. ACM, 2021, pages 445–461.
doi: 10.1145/3460120.3484534. url: https://doi.org/10.1145/3460120.348
4534 (cited on pages 55, 60).

[49] Pengfei Qiu, Qiang Gao, Dongsheng Wang, Yongqiang Lyu, Chunlu Wang, Chang Liu,
Rihui Sun, and Gang Qu. “PMU-Leaker: Performance Monitor Unit-Based Realization
of Cache Side-Channel Attacks”. In: Proceedings of the 28th Asia and South Pacific
Design Automation Conference, ASPDAC 2023, Tokyo, Japan, January 16-19,
2023. Edited by Atsushi Takahashi. ACM, 2023, pages 664–669. doi: 10.1145/35
66097.3567917. url: https://doi.org/10.1145/3566097.3567917 (cited on
page 36).

[50] Hany Ragab, Andrea Mambretti, Anil Kurmus, and Cristiano Giuffrida. “GhostRace:
Exploiting and Mitigating Speculative Race Conditions”. In: USENIX Security. Aug.
2024. url: Paper=https://download.vusec.net/papers/ghostrace_sec24.pdf
%20Web=https://www.vusec.net/projects/ghostrace%20Code=https://githu
b.com/vusec/ghostrace (cited on page 48).

[51] Allison Randal. “This is How You Lose the Transient Execution War”. In: CoRR
abs/2309.03376 (2023). doi: 10.48550/ARXIV.2309.03376. arXiv: 2309.03376.
url: https://doi.org/10.48550/arXiv.2309.03376 (cited on pages 51, 52, 56).

https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/2451116.2451143
https://doi.org/10.1145/2451116.2451143
https://doi.org/10.1145/2451116.2451143
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://doi.org/10.1109/SP46215.2023.10179391
https://doi.org/10.1109/SP46215.2023.10179391
https://doi.org/10.1109/SP46215.2023.10179391
https://doi.org/10.1109/HPCA47549.2020.00019
https://doi.org/10.1109/HPCA47549.2020.00019
https://doi.org/10.1109/HPCA47549.2020.00019
https://doi.org/10.1145/3460120.3484534
https://doi.org/10.1145/3460120.3484534
https://doi.org/10.1145/3460120.3484534
https://doi.org/10.1145/3566097.3567917
https://doi.org/10.1145/3566097.3567917
https://doi.org/10.1145/3566097.3567917
Paper=https://download.vusec.net/papers/ghostrace_sec24.pdf%20Web=https://www.vusec.net/projects/ghostrace%20Code=https://github.com/vusec/ghostrace
Paper=https://download.vusec.net/papers/ghostrace_sec24.pdf%20Web=https://www.vusec.net/projects/ghostrace%20Code=https://github.com/vusec/ghostrace
Paper=https://download.vusec.net/papers/ghostrace_sec24.pdf%20Web=https://www.vusec.net/projects/ghostrace%20Code=https://github.com/vusec/ghostrace
https://doi.org/10.48550/ARXIV.2309.03376
https://arxiv.org/abs/2309.03376
https://doi.org/10.48550/arXiv.2309.03376

Bibliography 104

[52] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M. Tullsen,
and Ashish Venkat. “I See Dead µops: Leaking Secrets via Intel/AMD Micro-Op
Caches”. In: 48th ACM/IEEE Annual International Symposium on Computer Ar-
chitecture, ISCA 2021, Valencia, Spain, June 14-18, 2021. IEEE, 2021, pages 361–
374. doi: 10.1109/ISCA52012.2021.00036. url: https://doi.org/10.1109
/ISCA52012.2021.00036 (cited on page 36).

[53] Ravi Sahita, Vedvyas Shanbhogue, Andrew Bresticker, Atul Khare, Atish Patra, Samuel
Ortiz, Dylan Reid, and Rajnesh Kanwal. “CoVE: Towards Confidential Computing on
RISC-V Platforms”. In: Proceedings of the 20th ACM International Conference
on Computing Frontiers, CF 2023, Bologna, Italy, May 9-11, 2023. Edited by
Andrea Bartolini, Kristian F. D. Rietveld, Catherine D. Schuman, and Jose Moreira.
ACM, 2023, pages 315–321. doi: 10.1145/3587135.3592168. url: https://doi
.org/10.1145/3587135.3592168 (cited on page 69).

[54] Gururaj Saileshwar and Moinuddin K. Qureshi. “CleanupSpec: An ”Undo” Approach to
Safe Speculation”. In: Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2019, Columbus, OH, USA, October
12-16, 2019. ACM, 2019, pages 73–86. doi: 10.1145/3352460.3358314. url: htt
ps://doi.org/10.1145/3352460.3358314 (cited on page 51).

[55] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Magnus
Själander. “Efficient invisible speculative execution through selective delay and value
prediction”. In: Proceedings of the 46th International Symposium on Computer
Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019. Edited by Srilatha
Bobbie Manne, Hillery C. Hunter, and Erik R. Altman. ACM, 2019, pages 723–735. doi:
10.1145/3307650.3322216. url: https://doi.org/10.1145/3307650.3322216
(cited on pages 51, 52).

[56] Olivier Savry, Mustapha El-Majihi, and Thomas Hiscock. “Confidaent: Control FLow
protection with Instruction and Data Authenticated Encryption”. In: 23rd Euromicro
Conference on Digital System Design, DSD 2020, Kranj, Slovenia, August 26-
28, 2020. IEEE, 2020, pages 246–253. doi: 10.1109/DSD51259.2020.00048. url:
https://doi.org/10.1109/DSD51259.2020.00048 (cited on pages 82, 88).

[57] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi Maisuradze,
Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “RIDL: Rogue In-Flight Data Load”.
In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA,
USA, May 19-23, 2019. IEEE, 2019, pages 88–105. doi: 10.1109/SP.2019.00087.
url: https://doi.org/10.1109/SP.2019.00087 (cited on page 45).

[58] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. “DRAM errors in the
wild: a large-scale field study”. In: Commun. ACM 54.2 (2011), pages 100–107. doi:
10.1145/1897816.1897844. url: https://doi.org/10.1145/1897816.1897844
(cited on page 25).

[59] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl, and
Daniel Gruss. “ConTExT: A Generic Approach for Mitigating Spectre”. In: 27th Annual
Network and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society, 2020. url: https:
//www.ndss-symposium.org/ndss-paper/context-a-generic-approach-for-
mitigating-spectre/ (cited on pages 51, 52, 69).

https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1145/3587135.3592168
https://doi.org/10.1145/3587135.3592168
https://doi.org/10.1145/3587135.3592168
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3307650.3322216
https://doi.org/10.1145/3307650.3322216
https://doi.org/10.1109/DSD51259.2020.00048
https://doi.org/10.1109/DSD51259.2020.00048
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1145/1897816.1897844
https://doi.org/10.1145/1897816.1897844
https://www.ndss-symposium.org/ndss-paper/context-a-generic-approach-for-mitigating-spectre/
https://www.ndss-symposium.org/ndss-paper/context-a-generic-approach-for-mitigating-spectre/
https://www.ndss-symposium.org/ndss-paper/context-a-generic-approach-for-mitigating-spectre/

Bibliography 105

[60] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas
Prescher, and Daniel Gruss. “ZombieLoad: Cross-Privilege-Boundary Data Sampling”.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2019, London, UK, November 11-15, 2019. Edited
by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. ACM,
2019, pages 753–768. doi: 10.1145/3319535.3354252. url: https://doi.org/1
0.1145/3319535.3354252 (cited on page 45).

[61] Benjamin Semal, Konstantinos Markantonakis, Raja Naeem Akram, and Jan Kalbant-
ner. “Leaky Controller: Cross-VM Memory Controller Covert Channel on Multi-core
Systems”. In: ICT Systems Security and Privacy Protection - 35th IFIP TC
11 International Conference, SEC 2020, Maribor, Slovenia, September 21-23,
2020, Proceedings. Edited by Marko Hölbl, Kai Rannenberg, and Tatjana Welzer.
Volume 580. IFIP Advances in Information and Communication Technology. Springer,
2020, pages 3–16. doi: 10.1007/978-3-030-58201-2_1. url: https://doi.org
/10.1007/978-3-030-58201-2%5C_1 (cited on page 36).

[62] Young-joo Shin, Hyung Chan Kim, Dokeun Kwon, Ji-Hoon Jeong, and Junbeom Hur.
“Unveiling Hardware-based Data Prefetcher, a Hidden Source of Information Leakage”.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
Edited by David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang. ACM,
2018, pages 131–145. doi: 10.1145/3243734.3243736. url: https://doi.org/1
0.1145/3243734.3243736 (cited on page 36).

[63] Mong Tee Sim and Yanyan Zhuang. “A Dual Lockstep Processor System-on-a-Chip for
Fast Error Recovery in Safety-Critical Applications”. In: The 46th Annual Conference
of the IEEE Industrial Electronics Society, IECON 2020, Singapore, October 18-
21, 2020. IEEE, 2020, pages 2231–2238. doi: 10.1109/IECON43393.2020.9255188.
url: https://doi.org/10.1109/IECON43393.2020.9255188 (cited on page 79).

[64] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLKSCREW: Exposing
the Perils of Security-Oblivious Energy Management”. In: 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, Aug. 2017,
pages 1057–1074. isbn: 978-1-931971-40-9. url: https://www.usenix.org/conf
erence/usenixsecurity17/technical-sessions/presentation/tang (cited on
page 21).

[65] Mohammadkazem Taram, Ashish Venkat, and Dean M. Tullsen. “Mitigating Specula-
tive Execution Attacks via Context-Sensitive Fencing”. In: IEEE Des. Test 39.4 (2022),
pages 49–57. doi: 10.1109/MDAT.2022.3152633. url: https://doi.org/10.110
9/MDAT.2022.3152633 (cited on pages 51, 52).

[66] Kim-Anh Tran, Christos Sakalis, Magnus Själander, Alberto Ros, Stefanos Kaxiras,
and Alexandra Jimborean. “Clearing the Shadows: Recovering Lost Performance for
Invisible Speculative Execution through HW/SW Co-Design”. In: PACT ’20: Interna-
tional Conference on Parallel Architectures and Compilation Techniques, Vir-
tual Event, GA, USA, October 3-7, 2020. Edited by Vivek Sarkar and Hyesoon Kim.
ACM, 2020, pages 241–254. doi: 10.1145/3410463.3414640. url: https://doi
.org/10.1145/3410463.3414640 (cited on pages 51, 52).

[67] Jack Wampler, Ian Martiny, and Eric Wustrow. “ExSpectre: Hiding Malware in Spec-
ulative Execution”. In: 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society, 2019. url: https://www.ndss-symposium.org/ndss-paper
/exspectre-hiding-malware-in-speculative-execution/ (cited on page 48).

https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1007/978-3-030-58201-2_1
https://doi.org/10.1007/978-3-030-58201-2%5C_1
https://doi.org/10.1007/978-3-030-58201-2%5C_1
https://doi.org/10.1145/3243734.3243736
https://doi.org/10.1145/3243734.3243736
https://doi.org/10.1145/3243734.3243736
https://doi.org/10.1109/IECON43393.2020.9255188
https://doi.org/10.1109/IECON43393.2020.9255188
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://doi.org/10.1109/MDAT.2022.3152633
https://doi.org/10.1109/MDAT.2022.3152633
https://doi.org/10.1109/MDAT.2022.3152633
https://doi.org/10.1145/3410463.3414640
https://doi.org/10.1145/3410463.3414640
https://doi.org/10.1145/3410463.3414640
https://www.ndss-symposium.org/ndss-paper/exspectre-hiding-malware-in-speculative-execution/
https://www.ndss-symposium.org/ndss-paper/exspectre-hiding-malware-in-speculative-execution/

Bibliography 106

[68] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham, Christo-
pher W. Fletcher, and David Kohlbrenner. “Hertzbleed: Turning Power Side-Channel
Attacks Into Remote Timing Attacks on x86”. In: 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022, pages 679–
697. isbn: 978-1-939133-31-1. url: https://www.usenix.org/conference/useni
xsecurity22/presentation/wang-yingchen (cited on page 21).

[69] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham, Christo-
pher W. Fletcher, and David Kohlbrenner. “Hertzbleed: Turning Power Side-Channel
Attacks Into Remote Timing Attacks on x86”. In: 31st USENIX Security Sympo-
sium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022. Edited
by Kevin R. B. Butler and Kurt Thomas. USENIX Association, 2022, pages 679–697.
url: https://www.usenix.org/conference/usenixsecurity22/presentation
/wang-yingchen (cited on page 36).

[70] Andrew Waterman. “Improving energy efficiency and reducing code size with RISC-V
compressed”. In: Master’s thesis (2011) (cited on page 90).

[71] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris Kasikci. “NDA:
Preventing Speculative Execution Attacks at Their Source”. In: Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 2019, Columbus, OH, USA, October 12-16, 2019. ACM, 2019, pages 572–
586. doi: 10.1145/3352460.3358306. url: https://doi.org/10.1145/3352460
.3358306 (cited on pages 51, 52).

[72] Nils Wistoff, Moritz Schneider, Frank K. Gürkaynak, Luca Benini, and Gernot Heiser.
“Microarchitectural Timing Channels and their Prevention on an Open-Source 64-bit
RISC-V Core”. In: Design, Automation & Test in Europe Conference & Exhibition,
DATE 2021, Grenoble, France, February 1-5, 2021. IEEE, 2021, pages 627–632.
doi: 10.23919/DATE51398.2021.9474214. url: https://doi.org/10.23919
/DATE51398.2021.9474214 (cited on page 39).

[73] Nils Wistoff, Moritz Schneider, Frank K. Gürkaynak, Gernot Heiser, and Luca Benini.
“Systematic Prevention of On-Core Timing Channels by Full Temporal Partitioning”. In:
IEEE Trans. Computers 72.5 (2023), pages 1420–1430. doi: 10.1109/TC.2022.32
12636. url: https://doi.org/10.1109/TC.2022.3212636 (cited on page 39).

[74] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W. Fletcher,
and Josep Torrellas. “InvisiSpec: Making Speculative Execution Invisible in the Cache
Hierarchy”. In: 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer
Society, 2018, pages 428–441. doi: 10.1109/MICRO.2018.00042. url: https://do
i.org/10.1109/MICRO.2018.00042 (cited on page 51).

[75] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W.
Fletcher. “Speculative Data-Oblivious Execution: Mobilizing Safe Prediction For Safe
and Efficient Speculative Execution”. In: 47th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2020, Virtual Event / Valencia,
Spain, May 30 - June 3, 2020. IEEE, 2020, pages 707–720. doi: 10.1109/ISCA456
97.2020.00064. url: https://doi.org/10.1109/ISCA45697.2020.00064 (cited
on pages 51, 52).

[76] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christo-
pher W. Fletcher. “Speculative Taint Tracking (STT): A Comprehensive Protection
for Speculatively Accessed Data”. In: IEEE Micro 40.3 (2020), pages 81–90. doi:

https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.23919/DATE51398.2021.9474214
https://doi.org/10.23919/DATE51398.2021.9474214
https://doi.org/10.23919/DATE51398.2021.9474214
https://doi.org/10.1109/TC.2022.3212636
https://doi.org/10.1109/TC.2022.3212636
https://doi.org/10.1109/TC.2022.3212636
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1109/ISCA45697.2020.00064

Bibliography 107

10.1109/MM.2020.2985359. url: https://doi.org/10.1109/MM.2020.2985359
(cited on pages 51, 52).

[77] Hao Zhan and Dan Wan. “Ethical Considerations of the Trolley Problem in Autonomous
Driving: A Philosophical and Technological Analysis”. In: World Electric Vehicle Jour-
nal 15.9 (2024). issn: 2032-6653. doi: 10.3390/wevj15090404. url: https://www
.mdpi.com/2032-6653/15/9/404 (cited on page 24).

[78] Zhi Zhang, Yueqiang Cheng, Yinqian Zhang, and Surya Nepal. “GhostKnight: Breach-
ing Data Integrity via Speculative Execution”. In: CoRR abs/2002.00524 (2020). arXiv:
2002.00524. url: https://arxiv.org/abs/2002.00524 (cited on page 48).

[79] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and Yuval
Yarom. “Ultimate SLH: Taking Speculative Load Hardening to the Next Level”. In:
32nd USENIX Security Symposium (USENIX Security 23). Anaheim, CA: USENIX
Association, Aug. 2023, pages 7125–7142. isbn: 978-1-939133-37-3. url: https://w
ww.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan
-slh (cited on pages 55, 60).

[80] Zirui Neil Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, Christopher W. Fletcher, Adam
Morrison, Darko Marinov, and Josep Torrellas. “Speculation Invariance (InvarSpec):
Faster Safe Execution Through Program Analysis”. In: 53rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO 2020, Athens, Greece,
October 17-21, 2020. IEEE, 2020, pages 1138–1152. doi: 10.1109/MICRO50266.2
020.00094. url: https://doi.org/10.1109/MICRO50266.2020.00094 (cited on
pages 51, 52).

Livres
[81] Auguste Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires, 1883

(cited on page 66).
[82] Donald A. Norman. The Design of Everyday Things. 1988 (cited on page 25).
[83] David A Patterson and John L Hennessy. Computer organization and Design. Mor-

gan Kaufmann, 1994 (cited on page 17).

Autres publications
[84] AlphaNov. Injection de fautes laser double. Accessed: 2025-03-25. 2025. url: htt

ps://archive.is/kYEcC (cited on page 80).
[85] AMD. Software Techniques for Managing Speculation on AMD Processors. Tech-

nical Document. Available online at https://www.amd.com/content/dam/amd/en/documents/epyc-
technical-docs/tuning-guides/software-techniques-for-managing-speculation.pdf. AMD,
2024. url: %7Bhttps://www.amd.com/content/dam/amd/en/documents/epyc-t
echnical-docs/tuning-guides/software-techniques-for-managing-specul
ation.pdf%7D (cited on page 50).

[86] Darrell D Boggs, Ross Segelken, Mike Cornaby, Nick Fortino, Shailender Chaudhry,
Denis Khartikov, Alok Mooley, Nathan Tuck, and Gordon Vreugdenhil. Memory type
which is cacheable yet inaccessible by speculative instructions. US Patent 10,642,744.
2020 (cited on page 52).

[87] Chandler Carruth. Speculative Load Hardening: A Spectre Variant #1 Mitiga-
tion Technique. https://llvm.org/docs/SpeculativeLoadHardening.html.
Accessed: 2024-03-12. Mar. 2024 (cited on pages 54, 55).

https://doi.org/10.1109/MM.2020.2985359
https://doi.org/10.1109/MM.2020.2985359
https://doi.org/10.3390/wevj15090404
https://www.mdpi.com/2032-6653/15/9/404
https://www.mdpi.com/2032-6653/15/9/404
https://arxiv.org/abs/2002.00524
https://arxiv.org/abs/2002.00524
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh
https://doi.org/10.1109/MICRO50266.2020.00094
https://doi.org/10.1109/MICRO50266.2020.00094
https://doi.org/10.1109/MICRO50266.2020.00094
https://archive.is/kYEcC
https://archive.is/kYEcC
%7Bhttps://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/tuning-guides/software-techniques-for-managing-speculation.pdf%7D
%7Bhttps://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/tuning-guides/software-techniques-for-managing-speculation.pdf%7D
%7Bhttps://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/tuning-guides/software-techniques-for-managing-speculation.pdf%7D
https://llvm.org/docs/SpeculativeLoadHardening.html

Bibliography 108

[88] Cloud Security Industry Summit Supply Chain Technical Working Group. Secure Firmware
Development Best Practices. Technical report. July 2019. url: https://www.ope
ncompute.org/documents/csis-firmware-security-best-practices-positi
on-paper-version-1-0-pdf (cited on page 84).

[89] Cory Doctorow. The Coming War on General Computation. Accessed: 2024-11-15.
2011. url: http://opentranscripts.org/transcript/coming-war-general-c
omputation/ (cited on page 24).

[90] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The
XTS-AES Mode for Confidentiality on Storage Devices. Special Publication 800-
38E. National Institute of Standards and Technology, Jan. 2010. doi: 10.6028/NIST.
SP.800-38E. url: https://csrc.nist.gov/publications/detail/sp/800-38e
/final (cited on page 69).

[91] Andreas Galauner. Glitching the Switch. Online video. Accessed: 2024-10-29. 2018.
url: https://media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switc
h (cited on pages 24, 25).

[92] Moein Ghaniyoun. RISC-V LLVM-SLH implementation. https://github.com/Mo
einGhaniyoun/LLVM-SLH-RISCV. Accessed: 2024-07-19. 2024 (cited on page 55).

[93] J. Horn. Speculative Execution, Variant 4: Speculative Store Bypass. https://b
ugs.chromium.org/p/project-zero/issues/detail?id=1528. 2024/02/16. Feb.
2018 (cited on page 47).

[94] Intel Corporation. Speculative Execution Side Channel Mitigations. https://www
.intel.com/content/www/us/en/developer/articles/technical/software-s
ecurity-guidance/technical-documentation/speculative-execution-side-
channel-mitigations.html. Accessed: 2024-02-27. Feb. 2024 (cited on page 49).

[95] Colin Percival. Cache missing for fun and profit. 2005 (cited on page 36).
[96] Phillip Rogaway. Evaluation of Some Blockcipher Modes of Operation. Technical

report. Evaluation carried out for the Cryptography Research and Evaluation Commit-
tees (CRYPTREC) for the Government of Japan. University of California, Davis, Feb.
2011. url: https://www.cs.ucdavis.edu/~rogaway/papers/modes.pdf (cited
on page 69).

[97] Thomas Rubiano. RISC-V LLVM-SLH Inria’s implementation. https://gitlab
.inria.fr/arsene-pepr/llvm-fence-spec. Accessed: 2024-07-19. 2024 (cited on
page 55).

[98] rvkrypto contributors. RISC-V Zkt Extension. https://github.com/rvkrypto/ri
scv-zkt-list/blob/main/zkt-list.adoc. Accessed: 2024-05-14. 2021 (cited on
page 33).

[99] Anand Lal Shimpi. ARM’s Cortex M: Even Smaller and Lower Power CPU Cores.
Accessed: 2025-01-09. Aug. 2014. url: https://www.anandtech.com/show/8400/a
rms-cortex-m-even-smaller-and-lower-power-cpu-cores (cited on page 80).

[100] National Institute of Standards and Technology (NIST). Ascon-Based Lightweight
Cryptography Standards for Constrained Devices: Authenticated Encryption,
Hash, and Extendable Output Functions. Initial Public Draft NIST SP 800-232.
Accessed: 2025-03-26. NIST Computer Security Resource Center, Nov. 2024. url: ht
tps://csrc.nist.gov/pubs/sp/800/232/ipd (cited on pages 83, 89).

[101] Taiwan Semiconductor Manufacturing Company Limited (TSMC). 40nm Technology.
Accessed: 2025-01-10. 2025. url: https://www.tsmc.com/english/dedicatedFo
undry/technology/logic/l_40nm (cited on page 80).

https://www.opencompute.org/documents/csis-firmware-security-best-practices-position-paper-version-1-0-pdf
https://www.opencompute.org/documents/csis-firmware-security-best-practices-position-paper-version-1-0-pdf
https://www.opencompute.org/documents/csis-firmware-security-best-practices-position-paper-version-1-0-pdf
http://opentranscripts.org/transcript/coming-war-general-computation/
http://opentranscripts.org/transcript/coming-war-general-computation/
https://doi.org/10.6028/NIST.SP.800-38E
https://doi.org/10.6028/NIST.SP.800-38E
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switch
https://media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switch
https://github.com/MoeinGhaniyoun/LLVM-SLH-RISCV
https://github.com/MoeinGhaniyoun/LLVM-SLH-RISCV
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.cs.ucdavis.edu/~rogaway/papers/modes.pdf
https://gitlab.inria.fr/arsene-pepr/llvm-fence-spec
https://gitlab.inria.fr/arsene-pepr/llvm-fence-spec
https://github.com/rvkrypto/riscv-zkt-list/blob/main/zkt-list.adoc
https://github.com/rvkrypto/riscv-zkt-list/blob/main/zkt-list.adoc
https://www.anandtech.com/show/8400/arms-cortex-m-even-smaller-and-lower-power-cpu-cores
https://www.anandtech.com/show/8400/arms-cortex-m-even-smaller-and-lower-power-cpu-cores
https://csrc.nist.gov/pubs/sp/800/232/ipd
https://csrc.nist.gov/pubs/sp/800/232/ipd
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_40nm
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_40nm

Bibliography 109

[102] Linux Kernel Documentation Team. Spectre Side Channels. https://docs.kern
el.org/admin-guide/hw-vuln/spectre.html. Accessed: 2024-07-26. 2024. url:
https://docs.kernel.org/admin-guide/hw-vuln/spectre.html (cited on
page 57).

[103] Paul Turner. Retpoline: a software construct for preventing branch-target-injection.
2018 (cited on page 53).

[104] Andrew Waterman and Krste Asanović. RISC-V Unprivileged Specification. Ver-
sion 20240411. 2024. url: https://drive.google.com/file/d/1uviu1nH-tScFf
grovvFCrj7Omv8tFtkp/view?pli=1 (cited on pages 15, 16, 73).

[105] Wikipedia contributors. AACS encryption key controversy. https://en.wikiped
ia.org/wiki/AACS_encryption_key_controversy. Accessed: 2025-03-20. 2025
(cited on pages 24, 25).

https://docs.kernel.org/admin-guide/hw-vuln/spectre.html
https://docs.kernel.org/admin-guide/hw-vuln/spectre.html
https://docs.kernel.org/admin-guide/hw-vuln/spectre.html
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?pli=1
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?pli=1
https://en.wikipedia.org/wiki/AACS_encryption_key_controversy
https://en.wikipedia.org/wiki/AACS_encryption_key_controversy

Acronyms

ABI application binary interface. 16, Glossary: application binary interface
API application programming interface. 26
ASIC application-specific integrated circuit. Glossary: application-specific integrated circuit
ASID address space identifier. 38
ASLR address space layout randomization. 48

BHB branch history buffer. 57
BHI branch history injection. 50, 57, 64
BHT branch history table. 7, 34, 35, 39, 40
BTB branch target buffer. 7, 36, 38–40, 42, 47, 49, 76
BTI branch target injection. 38, 64

CFG control-flow graph. 8, 73, 78, 81, 83–85
CFI control-flow integrity. 79, 84, 85, 115
CMOS complementary metal-oxide-semiconductor. 30
CoT chain-of-trust. 23, 24
CPU central processing unit. 20, 21, 44
CSR control and status register. 16, 37, 68, 84

DCLS dual-core lockstep. 7, 80
DMA direct memory access. Glossary: direct memory access
DRAM dynamic random-access memory. 23, 25, 114
DVFS dynamic voltage and frequency scaling. 36

ECC error correcting code. 25
EM electromagnetic. 14, 20–22, 30

FF flip-flop. 41, Glossary: flip-flop
FPGA field programmable gate array. 113
FSM finite state machine. 40, 43, 51

GPIO general purpose input/output. Glossary: general purpose input/output
GPR general purpose register. 68

HDD hard disk drive. Glossary: hard disk drive

110

Acronyms 111

HDL hardware description language. 95, 96
HDR habilitation à diriger des recherches. 13, 115
HSM hardware security module. 23–26

IBC indirect branch control. 50
IBPB indirect branch prediction barrier. 49, 50, 57
IBRS indirect branch restricted speculation. 38, 49, 50, 57
ILP instruction-level parallelism. 53
IPC instructions per cycle. Glossary: instructions per cycle
ISA instruction set architecture. 13, 15–17, 23, 30, 33, 37, 63, 66, 69, 73, 75, 78, 84, 90, 92,

95, 96, 113–115, Glossary: instruction set architecture
ISR instruction-set randomization. 8, 66, 80–83, 85, 87–90, 92, 95, 96

LFB line fill buffer. 45
LFSR linear feedback shift register. 39
LLC last level cache. 36, 43, 51
LRU least recently used. 39
LSU load store unit. 45
LUT look-up table. 41, Glossary: look-up table

MDS microarchitectural data sampling. 44
MMU memory management unit. 21, 22, 66, 69, 75, 114, Glossary: memory management

unit
MPU memory protection unit. 66
MTT memory tracking table. 69

OoO out-of-order. 45, 53, 58, 63, Glossary: out-of-order
OS operating system. 13, 23, 24, 39, 66, 69, 75, 77, 95, 114
OTA over-the-air. 66, Glossary: over-the-air

PC program counter. 17, 56, 72, Glossary: program counter
PHT pattern history table. 47, 60
PIN personal identification number. 22
PMP physical memory protection. 38, 69

RAII resource acquisition is initialization. Glossary: resource acquisition is initialization
RAM random-access memory. 16, 69, Glossary: random-access memory
RNG random number generator. 26
ROB reorder buffer. 8, 90, 91, Glossary: reorder buffer
RoT root-of-trust. 23, 24
RSB return stack buffer. 16, 36, 47, 53, 54, 57, 73, 113, 114

SB speculation barrier. 50
SE secure element. 23, 80
SLH speculative load hardening. 10, 54, 55, 57, 60
SMT simultaneous multithreading. 7, 36, 40, 41, 49, 113
SoC System-on-Chip. 21, 23–26, 43
SRAM static random-access memory. 80
SSA static single assignment. 60
SSBD speculative store bypass disable. 50
SSLH strong speculative load hardening. 55
STIBP single thread indirect branch predictors. 49, 50, 57
STL store-to-load forwarding. 47, 48

Acronyms 112

syscall system call. 57, Glossary: system call

TEE trusted execution environment. 23
TLB translation lookaside buffer. 36, 39, 51, Glossary: translation lookaside buffer

UART universal asynchronous receiver-transmitter. Glossary: universal asynchronous receiver-
transmitter

VM virtual machine. 10, 85, 86
VMID virtual machine identifier. 38

WCET worst case execution time. Glossary: worst case execution time

Glossary

application binary interface The application binary interface is the convention on the role
of registers (e.g. x1 is the return address), how to call functions (e.g. returned value
is in register a0), …It allows optimization (e.g. RSB) upon a more specific model of
instruction sequences than the one dictated by the ISA.. 16

flip-flop Flip-flops, or flip-flop registers are elementary memory elements in a circuit.. 41
function A function is a block of code that performs a specific task and returns a value.

Functions are used to compute and return a result, making them essential in both
procedural and functional programming. They can take input parameters and produce
an output based on those inputs. . 74, 113, 114

hart A hart is a hardware thread. Cores generally support a single hart, but some implementing
SMT can have several.. 45, 69

instruction set architecture The instruction set architecture (ISA) is the interface between
software and hardware. It includes the semantics of instructions supported by the proces-
sor, as well as the description of the architecture: number and size of registers, possible
processor configurations, etc. What can be controlled by the instruction set pertains to
the architecture. Hardware elements that cannot be controlled by the instruction set
pertain to the microarchitecture.. 13, 15–17, 23, 30, 33, 37, 63, 66, 69, 73, 75, 78, 84,
90, 92, 95, 96, 113, 115

look-up table Look-up tables are the elementary logic components in an field programmable
gate array (FPGA). Their count is a measure of the size of the combinational logic
circuit.. 41

memory management unit The memory management unit (MMU) is the hardware compo-
nent responsible for the translation of virtual addresses into physical addresses.. 21, 22,
66, 69, 75, 114

method A method is a function that is associated with an object or a class. Methods define
the behavior of objects in object-oriented programming. They can operate on the data
(attributes) of the object they belong to and can return values. Methods are invoked on
instances of classes and can modify the state of the object. . 73

113

Glossary 114

out-of-order An out-of-order execution core is a core that allows independent instruction to
be executed out-of-order, without waiting unnecessarily for previous instructions.. 45,
53, 58, 63

over-the-air Over-the-air updates are modification of the running firmware in an embedded
system after it has been deployed in its final location. Over-the-air means that the
update is performed with radio signals, but it can be more generally understand as a
communication with the vendor.. 66

procedure A procedure is a block of code that performs a specific task. It does not return
a value and is used to execute a series of statements. Procedures are typically used in
procedural programming to encapsulate reusable code. In assembly language, a proce-
dure is a subroutine that can be called using instructions like call and may or may not
return a value. The focus is on executing a sequence of instructions, and the term is
often used interchangeably with “function” depending on whether a value is returned. .
10, 73, 114

program counter The program counter is the register containing the address of the next
instruction to be executed. Depending on the instruction set architecture, this register
is directly accessible (e.g., ARM) or not (e.g., RISC-V).. 17, 56, 72

random-access memory RAM memory is fast and volatile memory. This term is often used
in place of DRAM which function is to store programs instructions and data.. 69

reorder buffer The reorder buffer is a data structure in the microarchitecture responsible
for reordering instructions after execution. A reorder buffer entry is reserved when an
instruction is decoded, thus preserving program order. Instruction commits are performed
according to the reorder buffer, which reestablishes the program order for committed
instructions.. 8, 90, 91

return stack A return stack is a data structure used to store the return addresses of subrou-
tines (procedures or functions) in a program. When a subroutine is called, the address
of the instruction following the call is pushed onto the return stack. Upon completion
of the subroutine, the return address is popped from the stack, allowing the program
to resume execution at the correct location. The return stack is essential for managing
control flow in programs, particularly in languages that support recursion and nested
subroutine calls. The return stack can be placed in main memory or in a dedicated
hardware structure called a return stack buffer (RSB). . 77

system call A system call is a particular function that requires privileged access from the
operating system. A system call allows code in user mode to interact with the OS, for
specific operations.. 57

translation lookaside buffer The translation lookaside buffer (TLB) is a cache memory for
the MMU dedicated to the translation of virtual addresses to physical addresses. In some
systems, there is a hierarchy of TLBs.. 36, 39, 51

Glossary 115

Summary
This habilitation à diriger des recherches (HDR) manuscript discusses the design of secure
microarchitectures, specifically focusing on RISC-V cores. The discussion is organized around
two central questions.

The first question addresses how to design a security-conscious applicative out-of-order
processor in 2025. The challenges posed by covert channels and transient attacks are explored.
Immediately applicable solutions, such as timing fences, domes, and speculation barriers, are
proposed to enhance security. However, designing such a secure core without significant per-
formance trade-offs or radical modifications to the entire design process (including software
source code, compilers, instruction set architectures (ISAs), and microarchitecture) remains
challenging.

Thus, the second question reimagines the design of RISC-V cores from the ground up, ex-
ploring radical changes and their potential to improve security. The focus is on microcontroller
cores that must be resilient to physical attacks. Key considerations include: how can an ISA
be designed to accommodate registers containing confidential data? Should forward indirect
jumps be prohibited to enhance control-flow integrity (CFI)? Why might lockstep processors
be vulnerable against upcoming fault injection techniques, and how can they be replaced with
cores offering cryptographic guarantees of integrity?

This manuscript provides an opportunity to discuss the design choices necessary for secure
microarchitectures, choices that are not always based solely on technical merits. Improving the
security of modern computing systems is a complex process, and by investigating the security
of today’s microarchitectures, future-proof designs can be advocated for.

Résumé
Ce manuscrit d’habilitation à diriger des recherches (HDR) traite de la conception de microar-
chitectures sécurisées, en se concentrant spécifiquement sur les cœurs RISC-V. La discussion
est organisée autour de deux questions centrales.

La première question aborde la manière de concevoir un processeur applicatif à exécution
dans le désordre axé sur la sécurité en 2025. Les défis posés par les canaux cachés et les
attaques microarchitecturales sont explorés. Des solutions immédiatement applicables, telles
que les barrières temporelles, les dômes et les barrières de spéculation, sont proposées pour
améliorer la sécurité. Cependant, concevoir un tel cœur sécurisé sans compromis significatifs sur
les performances ou sans modifications radicales de l’ensemble du processus de conception (y
compris le code source logiciel, les compilateurs, les jeux d’instructions et la microarchitecture)
reste un défi.

Ainsi, la deuxième question réinvente la conception des cœurs RISC-V à partir de zéro, en
explorant des changements radicaux et leur potentiel pour améliorer la sécurité. L’accent est
mis sur les cœurs de microcontrôleurs qui doivent être résilients face aux attaques physiques.
Les questions abordées incluent : comment concevoir un jeu d’instructions pour prendre en
compte les registres contenant des données confidentielles ? Les sauts indirects vers l’avant
doivent-ils être interdits pour améliorer l’intégrité du flot de contrôle ? Pourquoi les processeurs
lockstep pourraient-ils être vulnérables face aux techniques d’injection de fautes modernes, et
comment les remplacer par des cœurs offrant des garanties cryptographiques d’intégrité ?

Ce manuscrit offre l’occasion de discuter des choix de conception nécessaires pour des
microarchitectures sécurisées, des choix qui ne sont pas toujours uniquement basés sur des
mérites techniques. Améliorer la sécurité des systèmes informatiques modernes est un processus
complexe, et en examinant la sécurité des microarchitectures actuelles, il est possible d’entrevoir
des systèmes pérennes.

	List of Figures
	List of Tables
	List of Listings
	Foreword
	I Introduction and Prerequisites
	1 General Introduction
	1.1 What is this document?
	1.2 Who am I?

	2 Modern Cores
	2.1 Instruction Set Architectures
	2.1.1 What is an Instruction Set Architecture?
	2.1.2 Zooming In on RISC-V

	2.2 Microarchitecture
	2.2.1 In-order Microarchitectures
	2.2.2 Out-of-order Microarchitectures

	3 Security Definitions
	3.1 Physical Attacks and Microarchitectural Attacks
	3.2 Hardware Threat Models
	3.2.1 Remote Security on Application Processors
	3.2.2 Physical Security on Microcontrollers
	3.2.3 Threat Model Justification

	3.3 Confidentiality: What Should Be Secret?
	3.4 Integrity and Resilience in the Microarchitecture

	4 Security Beyond the Microarchitecture
	4.1 System-on-Chips
	4.2 The Responsibility of Security
	4.2.1 Limitations to the Secure Boot Threat Model
	4.2.2 The Threat Model Might Not Be The One Marketed
	4.2.3 The Sociology of Security in the Design Process

	II Improving Security in Today’s Cores
	5 Using Timing Measurements to Exfiltrate Information
	5.1 Covert and Side Channels
	5.1.1 Support for Covert and Side Channels
	5.1.2 Timing Threat Models

	5.2 Architectural Timing Channels
	5.2.1 Presenting Architectural Timing Channels
	5.2.2 Current Solutions Against Architectural Timing Channels

	6 Preventing Microarchitectural Timing Covert and Side Channels
	6.1 Microarchitectural Covert Channels
	6.1.1 Case Study: Using the BHT as a Covert Channel
	6.1.2 Microarchitectural Elements Likely to Create a Covert Channel

	6.2 Countermeasures to Microarchitectural Timing Covert Channels
	6.2.1 Leveraging Existing Architectural Security Boundaries
	6.2.2 Timing Fences
	6.2.3 Domes
	6.2.4 [enhanced,nobeforeafter,tcbox raise base,boxrule=0.2pt,top=0mm,bottom=0mm, right=0mm,left=0mm,arc=1pt,boxsep=1pt,before upper=, frame hidden, colback=gray!25!white,options@for=instbox]fence.time as an Official RISC-V Extension in Development
	6.2.5 Conclusion on Countermeasures Against Covert Channels

	7 The Dangers of Speculation
	7.1 Microarchitectural Data Sampling
	7.2 Meltdown and its Variants
	7.3 A Presentation of Spectre Attacks
	7.3.1 Basic Principle
	7.3.2 Microarchitectural Breakdown
	7.3.3 Exploits
	7.3.4 Variants

	7.4 Other Transient Attacks

	8 Dealing with Transient Attacks
	8.1 Current Solutions in AMD, ARM, and Intel Microarchitectures
	8.1.1 Intel
	8.1.2 AMD
	8.1.3 Arm

	8.2 Propositions from the Academic Literature
	8.2.1 Invisible Speculation: Reverting Mispeculated State
	8.2.2 Selective Speculation: Delaying Risky Speculation
	8.2.3 Protecting Secure Enclaves
	8.2.4 The Use of Formal Methods

	8.3 Compiler-Based Solutions
	8.3.1 Retpoline
	8.3.2 Speculative Load Hardening (SLH)
	8.3.3 Bounds Clipping

	8.4 Speculation Barriers for RISC-V
	8.4.1 Fences Semantics
	8.4.2 Placement Policies
	8.4.3 Hardware implementations
	8.4.4 Our results
	8.4.5 Concluding on Speculation Barriers and Spectre Countermeasures

	9 Concluding on Microarchitectural Attacks

	III Radical New Core Designs for Security
	10 Architectural Secret Values
	10.1 The Semantics of Architectural Secret Values
	10.1.1 Hardware Confidential Registers
	10.1.2 Imagining the Workflow

	10.2 Dynamic Tracking of Architectural Secrets in Memory
	10.2.1 Issues with Current Mechanisms
	10.2.2 Inline Memory Encryption

	10.3 Limitation: Against Hardware Secrets
	10.4 Conclusion

	11 Forbidding Forward Indirect Jumps
	11.1 Forward and Backward Indirect Jumps
	11.1.1 Use Cases of Indirect Jumps

	11.2 The Case for Forbidding Forward Indirect Jumps
	11.2.1 Indirect Jumps to Statically Unknown Destinations
	11.2.2 Dispatch Gadgets Are Inefficient
	11.2.3 A Dedicated Dispatch Instruction
	11.2.4 Considerations on the Hardware Implementation of Dispatch
	11.2.5 Backward Indirect Jumps Are Necessary for Efficient Designs

	11.3 Stronger Security Guarantees for Backward Indirect Jumps
	11.4 Forward Indirect Jumps as a Security Boundary
	11.5 Compiler Support
	11.6 Other Implications

	12 Instruction Set Randomization for Execution Integrity
	12.1 Lockstep Processors
	12.1.1 General Working Principle
	12.1.2 Security
	12.1.3 Economics
	12.1.4 Limitations

	12.2 Instruction Set Randomization
	12.2.1 Working Principle
	12.2.2 Forward Indirect Jumps
	12.2.3 (Micro)Architectural State Integrity
	12.2.4 Data Integrity
	12.2.5 Results from Instruction Set Randomization Techniques

	12.3 The Application Lifecycle
	12.4 The Limits of Control-Flow Integrity
	12.5 Conclusion

	13 Security Validation in Hardware
	13.1 Fetch and Decode
	13.1.1 Dedicated Buffer
	13.1.2 Optimised Primitives
	13.1.3 Integrity Tags

	13.2 Security Validation is Speculative

	14 Concluding on Radical Designs

	IV Conclusion
	15 Conclusion
	15.1 Reflecting on Past Works
	15.2 Future-Proof Designs
	15.3 Perspectives: How to Get There?

	Annexes
	Bibliography
	Articles
	Livres
	Autre

	Acronyms
	Glossary

